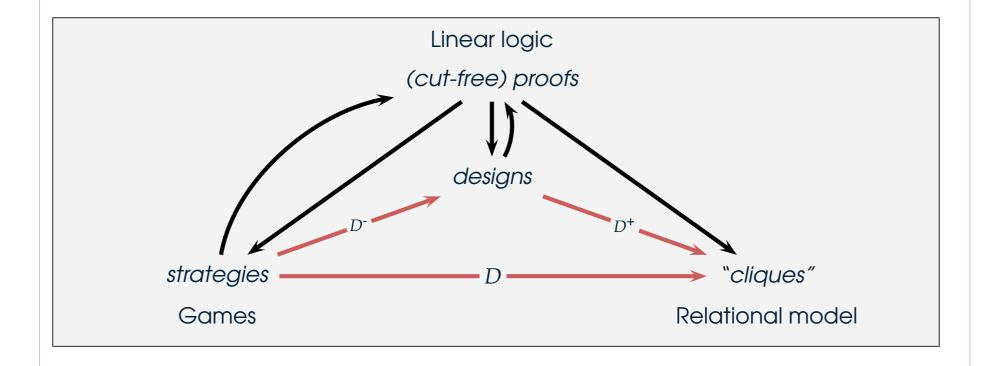
MELLpol, Designs (Games) and the Relational Model

Pierre Boudes, IML, Marseille

Situation



MELLpol: formulæ

$$N := \bot | N ? N | ? P$$

$$P := 1 \mid P \otimes P \mid !N$$

(negative formulæ)

(positive formulæ)

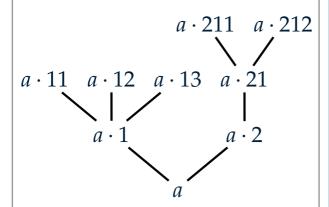
Arena of a formula:

$$arena(1) =$$

$$arena(P) = arena(P') = arena(P \otimes P') =$$

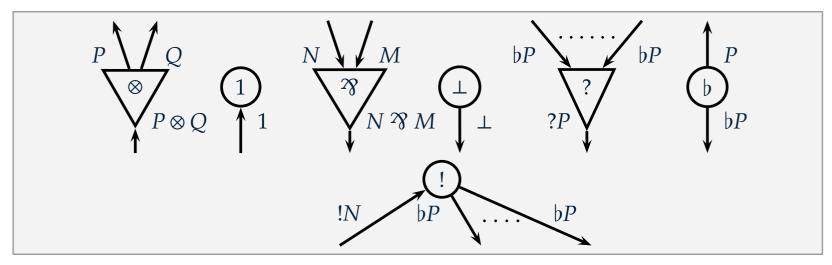
$$arena(P^{\perp}) = arena(P)$$

Naming:



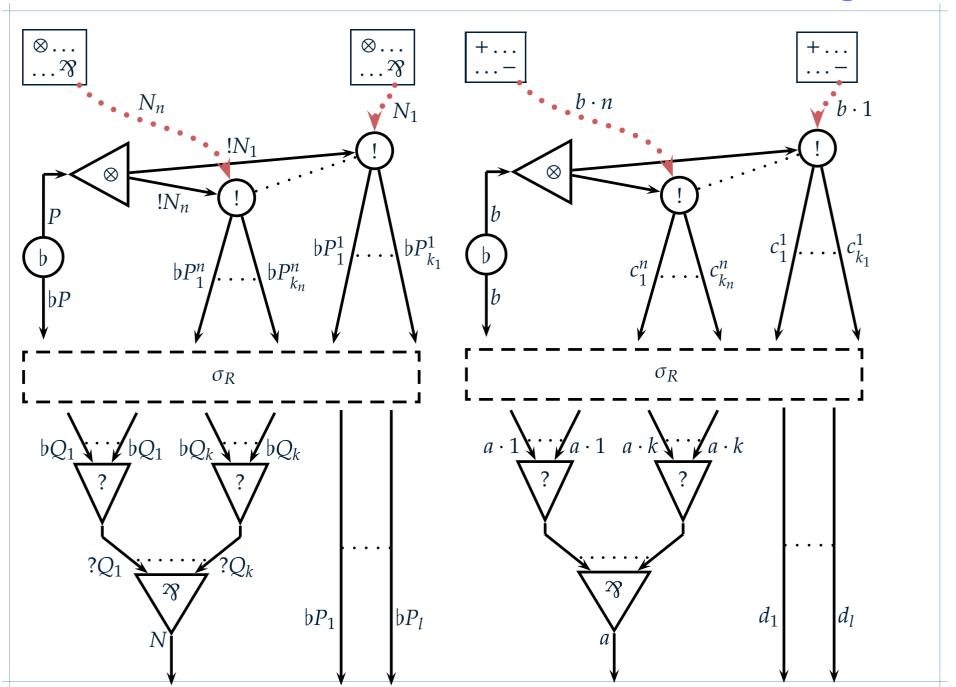
a word of integer

MELLpol: cut free proof-nets

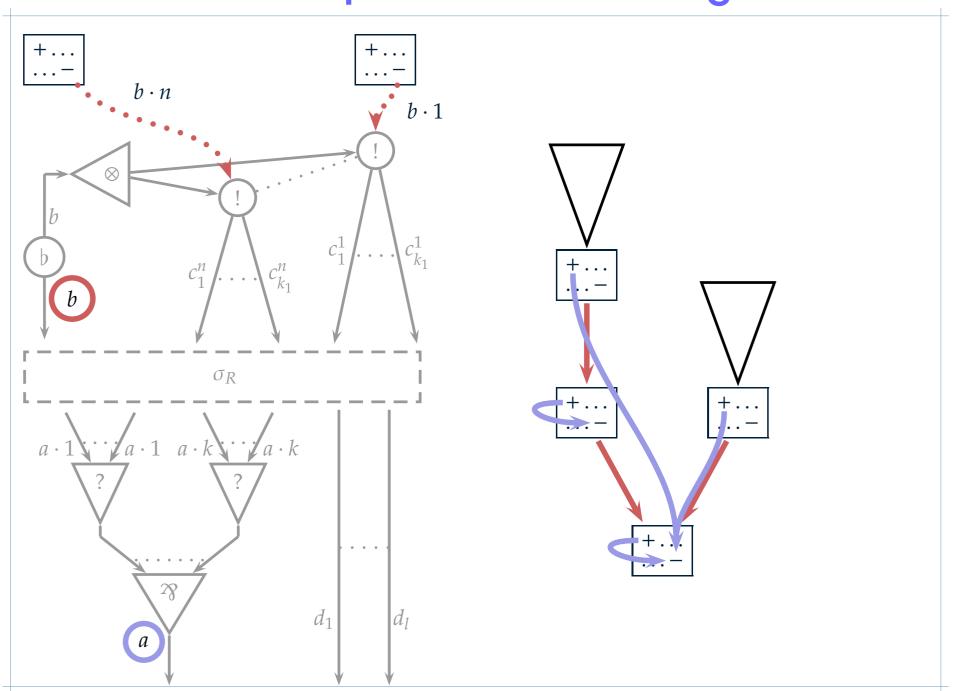


- bP negative (not a MELLpol formula)
- Flat proof structure (input/output orientation)
- Flat proof net with negative conclusions: acyclic and exactly one b node
- \blacktriangleright A proof net π of depth d is either :
 - ightharpoonup a flat proof net R with no! node (d = 0)
 - or a flat proof net R with, for each ! node n of conclusion $!N, bP_1, \ldots, bP_k$, a proof net π_n of conclusion N, bP_1, \ldots, bP_k ($d = \max(d_n)$).

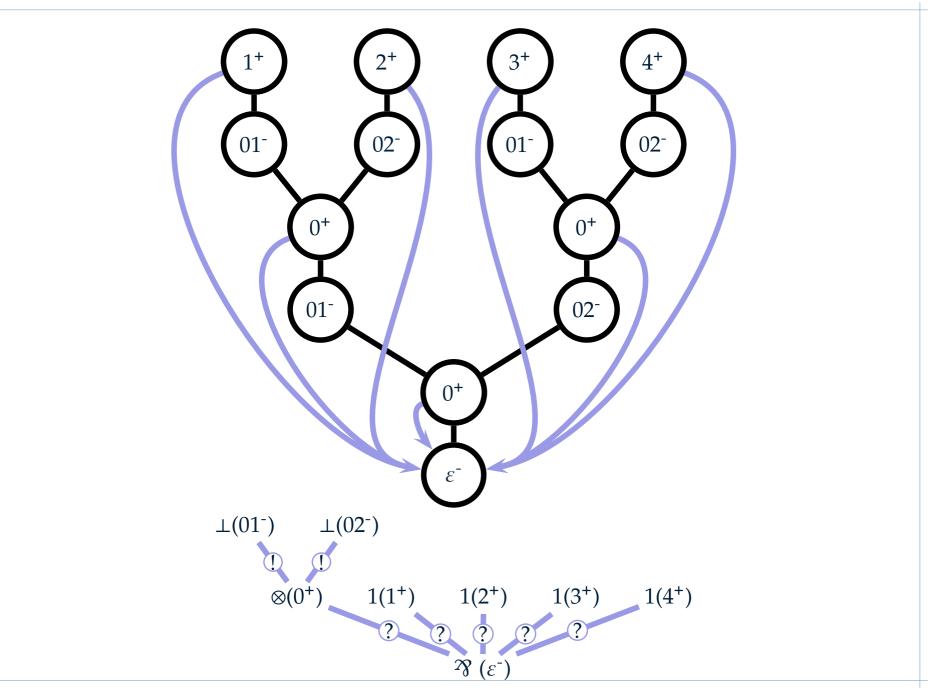
Cut free proof-nets: flat nets and naming



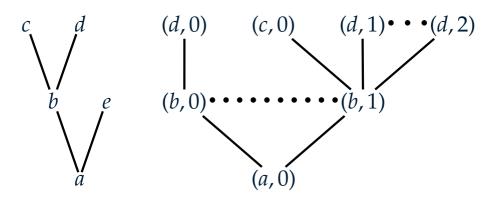
Cut free proof-nets and designs



A design



Thick subtrees



Finite trees:

$$t:=(t_1,\ldots,t_n)$$

Thick subtrees of a finite tree $t = (t_1, \dots, t_n)$:

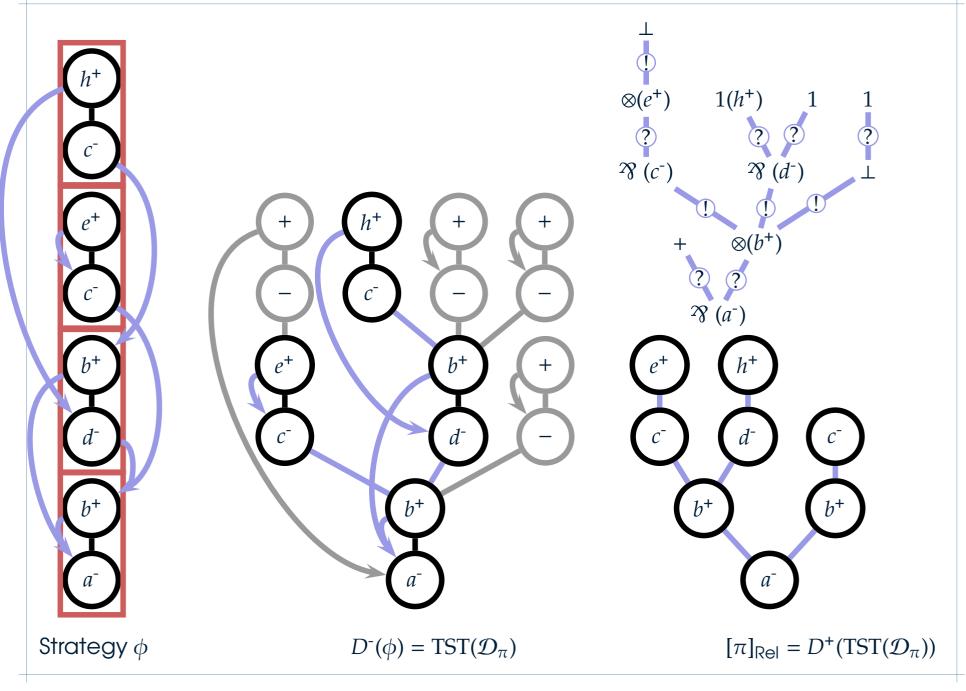
 $\tau := (\mu_1, \dots, \mu_n)$ μ_i finite multiset of thick subtrees of t_i

- there is no empty thick subtree
- First application :

$$[A]_{rel} = |A| = TST(arena(A))$$

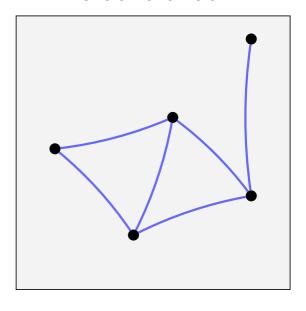
$$|!N_1 \otimes !N_n| = \mathcal{M}_{fin}(|N_1|) \times \ldots \times \mathcal{M}_{fin}(|N_n|)$$

Play (cut) Design (proof) Point (Formula)

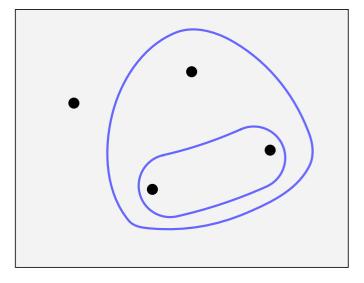


Coherence and hypercoherence spaces

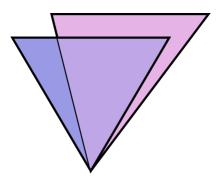
a coherence



a hypercoherence



Coherence of p_0, \ldots, p_n depends only on $\cap p_i$ (intersection) and $\cup p_i$ (surperposition) and is equivalent to the coherence of $\cap p_i$ and $\cup p_i$.



Interpretations of proofs are closed by intersection and superposition of trees/points.

(...)

