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Abstract

In [2], we presented a SFC-safe framework for programming monetary economics
simulations, which we succesfully tested on top of Pascal Seppecher’s Jamel. We
present here a functional implementation of a macro-economics simulator. Interaction
is mediated through constraints, accounting for agent’s anticipation.

The dynamics of constraints is handled in the background by the simulation itself,
while the economist-programmer is provided a convenient domain-specific language
for programming behavioural bricks. We present an implementation of such a system
in the Scala language.

1 Safe programming of monetary economics simulations

As economics simulation grow in size and complexity, it gets increasingly important to
have tools discharging the programmer-economist from any burden whose handling can be
automatized. In particular, we are interested in increasing compositionality and modularity
of functions and sections of programs. Indeed, a solution to a problem (be it economic or
otherwise) that does not scale can not be considered satisfactory. Compositionnality offers
a path to scaling: the possibility of dissecting a problem into smaller components, each
one being able to be solved easily, and then recomposed onto the original problem is of
paramount importance. Functionnal programming is a progamming paradigm that aims
at providing compositionnality, by isolating the internal behaviour of functions from the
effects they can have, thus enable simpler composition. We advocate the financial system
can be seen as a side effect of the real economy (and thus that the financial and real spheres
of the economy, distinct but correlated, have to be treated as such in simulations).

The noble goal of programming in such a way can be complicated for the programmer:
in particular, isolating functions from the financial system creates difficulties in interacting
with one person’s account, for instance for checking it. It creates important difficulties for
managing anticipations. Our vision would be pretty useless if it imposed to big a burden on
the economist-programmer. We present here a solution to the management of expectations
in the framework of functional stock-flow consistent programming.

In a previous work [2], we presented a framework handling the Stock-Flow Consistency
for the programmer. Let us review the main points of this framework.

Functional programming is a paradigm really close to mathematical practice: once
defined, an object never changes value; functions have first-class status and can be passed
as arguments to higher-order functions; the output of the application of a function to
an input only depends on the argument, and not on hidden parameters such as a global
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state. As such, it allows both for an ease of translating specifications (often expressed
mathematically) into a program and of reasonning about the program.

Strongly-typed functional programming adds another aspect, which we will use heavily:
from a static analysis of the code, it is possible to infer a specific kind of invariant of a
program, its type. Much can be recovered from the type of a program in a strongly-typed
setting [3]. Consider, for instance, an Haskell program of the type f : ∀α, [α]→ int.

Its meaning is that f can take as an input a list of elements of any type (but homoge-
neous: every element of the list must be of the same, unknown a priori type) and returns
an integer. It can be proved that such a function can not look at the elements of the list
(as f should be the same for every type α) and so can only be a function on the length of
the list and not its content.

As this example shows, types encode invariants of a program. An interesting invariant
in monetary economics simulation is Stock-Flow Consistency [1]: the fact that every mon-
etary transaction has an exact counterpart. In our previous work, we presented a couple
of type constructions expressing that a program typed with these constructions is SFC.

1.1 The SFC monadic duet

In order to make possible for the type system to know of the financial system, we first
introduce some abstract types:

Id. The Id type is a type of identifiers, that identifies an account and its owner (an owner
may have multiple accounts).

Amount. The Amount type is just an abstract numerical type, expressing any amount of
money.

Accounts. The Accounts type is a type of key-value map: each key (of type Id) is mapped
to a value (of type Amount). It can be thought of as a dictionnary, an array or a list.

Constraints and Satisfactions. The Constraints and Satisfactions types are im-
plemented like Accounts. A constraint aims to represent a required amount on the
account with the corresponding id and a satisfaction as to be though as computed
as the difference between the real amount on the account and the amount required
by a certain constraint.

Transaction. The Transaction type contains at least triples Id× Amount× Id.

It is straightforward to define addition, maximum, minimum, extensional order on
Accounts, Constraints or Satisfactions. We use a special difference 	 and addition
⊕, defined only where their left-hand-side operand are defined (example Figure 1). Given
a list of transactions we can compute the balance it implies on the accounts and also the
lowest amount each account reaches while firing the transactions in the order of the list.
See Figure 1.

Functions inside the simulator are of the type:

α β
def
= (α× (Constraints→ Satisfactions))→ β × (Transaction List)

We will use an example function of this type, named f . You can see that this type is a
function. Let us start with the left part of the type,
α×(Constraints→ Satisfactions). These are the two arguments that f will receive. The
α is the value, like the simulation objects (firms, . . . ). The Constraints→ Satisfactions
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Figure 1: Operations on accounts and operations balance and low

part is the way for f to obtain the information about bank accounts. f will give some
constraints about some accounts, and will receive in exchange the satisfactions. For the
right part of the type, β × TransactionsList, it is what f will return. The β is a value
optionally different from α. The transactions list is the financial action of f , expressed as
a list of transactions.

This programming style ensures that a function programmed this way is SFC, through
two different observations:

• a function must give a financial constraint in order to access its input. If the con-
straint is not fulfilled, it will not receive it, or receive a fallback value;

• a function does not access the financial system by itself, but produces a list of transac-
tions for the financial system to execute. A list of transaction guarantees consistency
by definition.

Before going on with this type, let us introduce Jamel, Pascal Seppecher’s monetary
economics simulator, as we are going to use it in an example.

2 One Jamel period

Many simulators are structured as a sequence of periods. In a functional style, a period is
a function from a state in input to updated state in output. In another, more imperative,
style, it can be a procedure which updates some state stored somewhere. In this section
we describe the period of the simulator Jamel.

Jamel defines a state composed of three types of agents:
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• a unique bank, which lends money, earns interests for loans and shares dividends with
its owner (an household);

• several firms, which hire workforce, pay wages, sell goods, borrow and pay back
money and share dividends with their owners (some households);

• several households, which earn wages, work for firms and buy goods.

A period is composed of many sequential steps, among which one where firms plan
production and one on which they pay the wages. In many of these steps, an agent
receives information about its environment (its account current balance, the markets) and
reacts to it, sometimes also with a memory of the past. The agent often has to forecast and
anticipate for a step in the future. It is the case with the two steps “firms plan production”
and “firms pay the wages”. The firm has to compute how much money is needed to pay
the wages. In a future step, it has to pay the wages. On a concrete example:

• firm A plans production: it computes the sum of wages it will have to pay this month
(10 × 100 units); checks the amount of its bank account (800 units); asks the bank
for a loan (200 units).

• firm A do other things, such as hiring workers

• firm A pays wages: it computes the sum of wages it has to pay (10 × 100 units); and
pays the wages (1000 units).

The computation during the firm forecast and the one happening really at a later
point are the same. In a sense, the firm projects itself onto the future when forecasting,
computes some constraints on its state in the present, and deduces from it actions that must
be undertaken in the present. It might be interesting to fuse the two steps of forecasting
and of actually acting by exploring mechanisms allowing to have some limited control of
the past from the future (allowing for this sort of constraints flowing from the future to
the past).

In the next section we present the composition which will allow information from the
future to flow back to the past and allow functions to prepare it. The explanation will be
accompanied with an example directly inspired from the "borrow and pay wages" one of
Jamel.

3 Composition

We defined in a previous section the type and the behaviour of one function. Now the most
important thing to do is define the composition of two functions. Recall that a fonctional
simulator is built as a composition of functions.

The goal is simple : we dispose of two functions, f of type α  β (see the previous
section about this type) and g of type β  γ. What we want to define is method to obtain
a function h of type α γ as a combination of f and g.

We illustrate the composition with Figure 2, an example with two functions : borrow
that borrow if the amount on the account is negative and payWages that spend money if
there are some. We compose borrow with payWages and the goal is that borrow eventually
learn about payWages constraints and borrow money for it. The type of both functions are
Sim  Sim or (Sim × (Constraints → Satisfactions)) → (Sim × TransactionList).
Sim contains objects of the simulation, here a bank, a firm, some workers and some loans.
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Figure 2: Diagram of the composition of borrow and payWages.

5



3.1 Initiation phase

We want the constraints and transactions of payWages to flow backward to borrow, so it
can have a vision of its ’future’ and make actions to prepare it. Of course, to know the
actions of payWages, we need to execute it once, and for this we need to execute borrow
once because payWages needs the Sim that borrow produces. So, the composition always
starts by the initiation phase, where we execute borrow then payWages.

3.2 Stabilization phase

Once we got the previous constraints of payWages, we replay borrow. To grant borrow
with the ability of knowing about payWages constraints, we are going to interfere in its
call of satisfaction. Indeed we modify the constraints of borrow by adding the ones of
payWages. In this way the constraint grow and the satisfaction become negative. Then
borrow know it has to make some loan.

This is a stabilization phase because we replay it until payWages obtain a positive
satisfaction. In this case it means that borrow successfully provided the money asked by
payWages and the composition has achieved its purpose.

3.3 A bit more complicated

As you can see in Figure 2 things are more complicated. To have a correct composition,
more information has to be shared.

First, borrow has to know about the constraints of payWages but also about its transac-
tions. To achieve this, what is added to the contraints of borrow is the max of [ contraints
of payWages and the low of the transactions of payWages ]. We are using the max be-
cause we do not want these two informations to be duplicated. We are using low on the
transactions to obtain the constraints they express.

Then, payWages should know about borrow transactions. Unless, it would never know
when borrow have lend some money. This is achieved byminus the constraints of payWages
by the bal of borrow’s transactions. By reducing the constraints, we are raising the satis-
faction, so payWages will be able to spend money. We use bal here and not low because
we do not need the constraints but the resulting amounts of money on the accounts.

3.4 End phase

When we reach satisfaction (or when the transactions become constants), we can stop
the composition and give the result. Of course, the result value is the last Sim given by
payWages and the concatenation of the last transactions of borrow and payWages.

4 Implementation and usability

The system we described is powerful and removes a lot of unduly burden from the shoul-
der of the programmer: in particular, nothing relating to the management of the financial
system or the way agents project themselves in the future is to be handled by the pro-
grammer herself. All that needs to be written are small blocks handling atomic operations
(such as the wages payment, the decision to work or not for a household,. . . ) and global
information about the simulation (which operations are chained? In which order? Is there
a notion of periods? If so, how do they compose?. . . ).

We propose a small Domain-Specific Language suited for describing such global infor-
mation as well as atomic functions, meant to be composed. The control-flow of each atomic
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val payWages = (sim:Sim) => {
val fid = sim.firm.id
val sumWages = sim.firm.workers.map(_.wage).sum
withConstraints (fid -> sumWages) (

{ satisfied => make =>
sim.firms.workers foreach (w => make order (fid, w.wage, w.id))

},
{ unsatisfied => make => make nothing })

}

Figure 3: the function "payWages" written with the DSL

val borrow = (sim:Sim) => {
val fid = sim.firm.id
withConstraints (fid -> 0) (

{ satisfied => make => make nothing },
{ unsatisfied => make =>

val loanAmount = (-1) * unsatisfied(fid)
make loan (fid, loan) })

}

Figure 4: the function "borrow" written with the DSL

function is really simple. The function declares a list of minimum amounts on some ac-
counts. They are the wishes of the function, it is telling to anterior functions that it would
be best to have these amounts. Take for example Figure 3 where the function payWages
meant for paying wages is written. Observe that the function first computes the sum of
the wages, and then declare that it would be best if the firm have this amount on its bank
account, with the keyword withConstraints. After the wishes comes the actual results
and reactions. There are two possibilities: either the constraints are satisfied, either they
are not. You can see there is indeed two corresponding constructs on the figure, satisfied
and unsatisfied. The (un)satisfaction received is the difference between the constraints
and the actual amounts on accounts. In the case of payWages, a satisfied constraint means
there is enough on the firm’s account to pay the wages. So for each worker in the firm,
the function order a transaction by using the DSL provided utility make order. In the
other hand, an unsatisfied constraint would mean that the firm has not enough money, so
payWages cannot pay the workers. It is not definitive as the composition will often need
several steps to stabilize and give satisfaction to payWages.

The other function borrow at Figure 4 is very similar, except it reacts on an unsatisfied
constraint. There is also the code unsatisfied(fid), which reflects the fact that the
satisfaction is indeed a Map of Id to Amount and that we can get the amount of the firm
by giving the firm’s id. Now that we have seen how to describe atomics functions using
the DSL, what remains is the combination of these little parts. All that is needed is the
ordered sequence of atomic parts. To complete our example, the following code permits to
sequence (compose) the two atomics borrow and payWages.

val period = new PeriodBuilder() + borrow + payWages

The DSL is implemented as a small collection of functions written in the Scala language.
It is a good trade-off between a perfect syntax for the DSL and the full power of a complete

7



programming language. It is worth nothing that it is fully compatible with Java, the
language used in Jamel.
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