Non-uniform Hypercoherences

Pierre BOUDES

Institut de Mathématiques de Luminy

Previous Next Back - p.1/13

Denotational semantics (of λ -calculus, PCF, LL)

Denotational semantics (of λ -calculus, PCF, LL) • proofs, terms \rightarrow some math. structures: *agents*

Denotational semantics (of λ -calculus, PCF, LL)

- proofs, terms \rightarrow some math. structures: *agents*
- sequentiality & determinism. No concurrency

Denotational semantics (of λ-calculus, PCF, LL)
proofs, terms → some math. structures: agents
sequentiality & determinism. No concurrency
Internal interactivity of calculus

Denotational semantics (of λ-calculus, PCF, LL)
proofs, terms → some math. structures: agents
sequentiality & determinism. No concurrency
Internal interactivity of calculus
extensionality (PER), extensional collapse (quotient)

Denotational semantics (of λ-calculus, PCF, LL)
proofs, terms → some math. structures: agents
sequentiality & determinism. No concurrency
Internal interactivity of calculus
extensionality (PER), extensional collapse (quotient)

uniformity: the stage where agents interact

Denotational semantics (of λ -calculus, PCF, LL) proofs, terms \rightarrow some math. structures: *agents* ٩ sequentiality & determinism. No concurrency ٩ **Internal interactivity** of calculus extensionality (PER), extensional collapse (quotient) ٩ uniformity: the stage where agents interact ٩ **Exponential** modalities of linear logic (! and ?)

Denotational semantics (of λ -calculus, PCF, LL) proofs, terms \rightarrow some math. structures: *agents* ٩ sequentiality & determinism. No concurrency ٩ **Internal interactivity** of calculus extensionality (PER), extensional collapse (quotient) ٩ uniformity: the *stage* where agents interact ٩ **Exponential** modalities of linear logic (! and ?) resource management ٩

Denotational semantics (of λ -calculus, PCF, LL) proofs, terms \rightarrow some math. structures: *agents* ٩ sequentiality & determinism. No concurrency ٩ Internal interactivity of calculus extensionality (PER), extensional collapse (quotient) ٩ uniformity: the *stage* where agents interact ٩ **Exponential** modalities of linear logic (! and ?) resource management ٩

complexity issue (ELL, LLL), polarities, ...

 $P = \lambda \overline{b}. \quad \text{if } b \quad \text{then } \{ \text{ if } b \quad \text{then } t_1 \text{ else } t_2 \}$ else { if b then t_3 else t_4 }

 $P = \lambda b. \quad \text{if } b \quad \text{then } \{ \text{ if } b \quad \text{then } t_1 \text{ else } t_2 \}$ $else \{ \text{ if } b \quad \text{then } t_3 \text{ else } t_4 \}$

 $P = \lambda \overline{b}. \quad \text{if } b \quad \text{then } \{ \text{ if } b \quad \text{then } t_1 \text{ else } t_2 \}$ $else \{ \text{ if } b \quad \text{then } t_3 \text{ else } t_4 \}$

 $\begin{array}{l} \mathsf{P} \colon \mathsf{Bool} \to \mathsf{Bool} \cong !\mathsf{Bool} \multimap \mathsf{Bool} \\ \\ t_i^{\bullet} \in \{\mathtt{t}, \mathtt{f}\} \end{array}$

 $P = \lambda \overline{b}. \quad \text{if } b \quad \text{then } \{ \text{ if } b \quad \text{then } t_1 \text{ else } t_2 \}$ $else \{ \text{ if } b \quad \text{then } t_3 \text{ else } t_4 \}$

 $P: \mathsf{Bool} \to \mathsf{Bool} \cong !\mathsf{Bool} \multimap \mathsf{Bool}$ $t_i^{\bullet} \in \{t, f\}$

Coherence spaces and **hypercoherences** semantics (set-based) are *uniform*

$$P^{\bullet} = \{(\{\mathtt{t}\}, t_1^{\bullet}), (\{\mathtt{f}\}, t_4^{\bullet})\}$$

 $P = \lambda \overline{b}. \quad \text{if } b \quad \text{then } \{ \text{ if } b \quad \text{then } t_1 \text{ else } t_2 \}$ $else \{ \text{ if } b \quad \text{then } t_3 \text{ else } t_4 \}$

 $extsf{P:Bool} o extsf{Bool} \cong extsf{Bool} o extsf{Bool}$ $t_i^{ullet} \in \{ extsf{t}, extsf{f}\}$

Relational semantics is *non-uniform*

 $P^{\bullet} = \{ ([\texttt{t},\texttt{t}], t_1^{\bullet}), ([\texttt{t},\texttt{f}], t_2^{\bullet}), ([\texttt{t},\texttt{f}], t_3^{\bullet}), ([\texttt{f},\texttt{f}], t_4^{\bullet}) \}$

 $P = \lambda \overline{b}. \quad \text{if } b \quad \text{then } \{ \text{ if } b \quad \text{then } t_1 \text{ else } t_2 \}$ $else \{ \text{ if } b \quad \text{then } t_3 \text{ else } t_4 \}$

 $\begin{array}{l} \mathsf{P} \colon \mathsf{Bool} \to \mathsf{Bool} \cong !\mathsf{Bool} \multimap \mathsf{Bool} \\ \\ t_i^{\bullet} \in \{\mathtt{t}, \mathtt{f}\} \end{array}$

Multiset-based coherence spaces and hypercoherences semantics are also *uniform*

 $P^{\bullet} = \{ ([\mathtt{t}, \mathtt{t}], t_1^{\bullet}), ([\mathtt{f}, \mathtt{f}], t_4^{\bullet}) \}$

Static semantics

Dynamic semantics

Previous Next Back - p.4/13

Static semantics: Agents are sets of points

Dynamic semantics

Previous Next Back - p.4/13

Static semantics: Agents are sets of points

Dynamic semantics: Agents are sets of pol. paths

Previous Next Back - p.4/13

Static semantics: Agents are sets of **points** • additives \rightarrow disjoint unions, \emptyset

Dynamic semantics: Agents are sets of **pol. paths** • additives \rightarrow disjoint unions, \emptyset

Static semantics: Agents are sets of points

- additives \rightarrow disjoint unions, \emptyset
- multiplicatives \rightarrow product of sets, $\{*\}$

 $|A \multimap B| = |A \mathcal{R} B| = |A \otimes B| = |A| \times |B|$

Dynamic semantics: Agents are sets of pol. paths

• additives \rightarrow disjoint unions, \emptyset

- additives \rightarrow disjoint unions, \emptyset
- multiplicatives \rightarrow product of sets, $\{*\}$

 $|A \multimap B| = |A \mathcal{R} B| = |A \otimes B| = |A| \times |B|$

Dynamic semantics: Agents are sets of pol. paths

- additives \rightarrow disjoint unions, \emptyset
- multiplicatives \rightarrow interleaving of paths, $\{\varepsilon\}, \{\ast^{\circ}\}, \{\ast^{\circ}\}$

- additives \rightarrow disjoint unions, \emptyset
- multiplicatives \rightarrow product of sets, $\{*\}$
- exponentials \rightarrow finite sets or multisets
- Dynamic semantics: Agents are sets of pol. paths
 - additives \rightarrow disjoint unions, \emptyset
 - multiplicatives \rightarrow interleaving of paths, $\{\varepsilon\}, \{\ast^{\circ}\}, \{\ast^{\circ}\}$

- additives \rightarrow disjoint unions, \emptyset
- multiplicatives \rightarrow product of sets, $\{*\}$
- exponentials \rightarrow finite sets or multisets, agents
- Dynamic semantics: Agents are sets of pol. paths
 - additives \rightarrow disjoint unions, \emptyset
 - multiplicatives \rightarrow interleaving of paths, $\{\varepsilon\}, \{\ast^{\circ}\}, \{\ast^{\circ}\}$

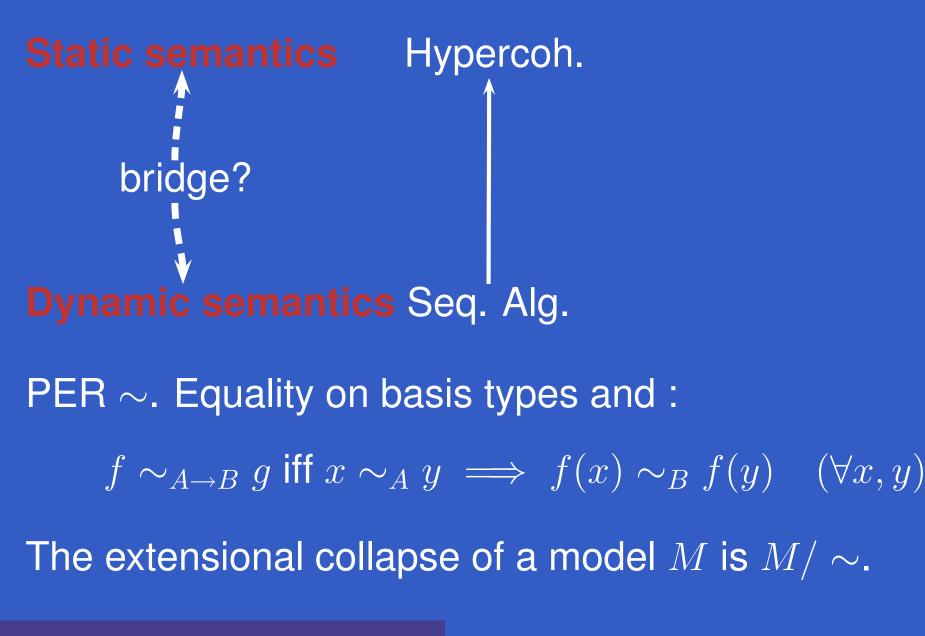
- additives \rightarrow disjoint unions, \emptyset
- multiplicatives \rightarrow product of sets, $\{*\}$
- exponentials \rightarrow finite sets or multisets, agents
- Dynamic semantics: Agents are sets of pol. paths
 - additives \rightarrow disjoint unions, \emptyset
 - multiplicatives \rightarrow interleaving of paths, $\{\varepsilon\}, \{\ast^{\circ}\}, \{\ast^{\circ}\}$
 - exponentials \rightarrow interleaving of paths

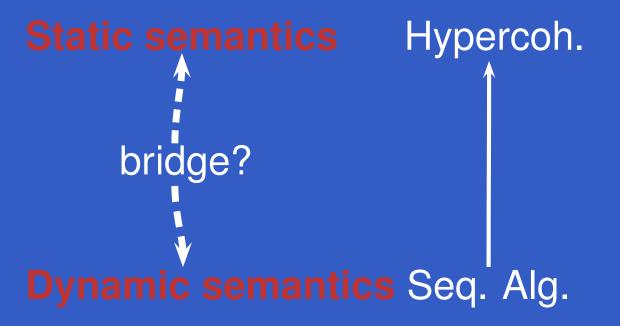
- \blacktriangleright additives ightarrow disjoint unions, \emptyset
- multiplicatives \rightarrow product of sets, $\{*\}$
- exponentials \rightarrow finite sets or multisets, agents
- Dynamic semantics: Agents are sets of pol. paths
 - additives \rightarrow disjoint unions, \emptyset
 - multiplicatives \rightarrow interleaving of paths, $\{\varepsilon\}, \{\ast^{\circ}\}, \{\ast^{\circ}\}$
 - exponentials \rightarrow interleaving of paths in agents

- additives \rightarrow disjoint unions, \emptyset
- multiplicatives \rightarrow product of sets, $\{*\}$
- exponentials \rightarrow finite sets or multisets, **agents**
- Dynamic semantics: Agents are sets of pol. paths
 - additives \rightarrow disjoint unions, \emptyset
 - multiplicatives \rightarrow interleaving of paths, $\{\varepsilon\}, \{\ast^{\circ}\}, \{\ast^{\circ}\}$
 - exponentials → interleaving of paths in agents uniformity

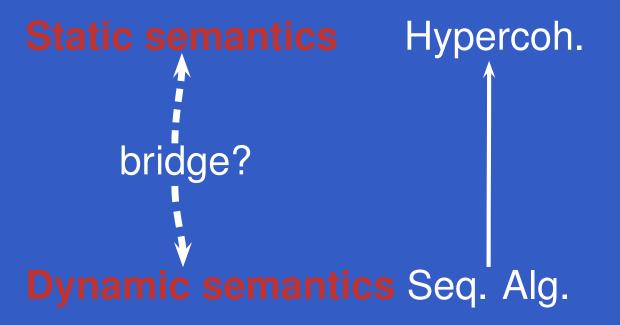
Static semantics bridge? Dynamic semantics

Static semantics Hypercoh. bridge? Dynamic semantics Seq. Alg.

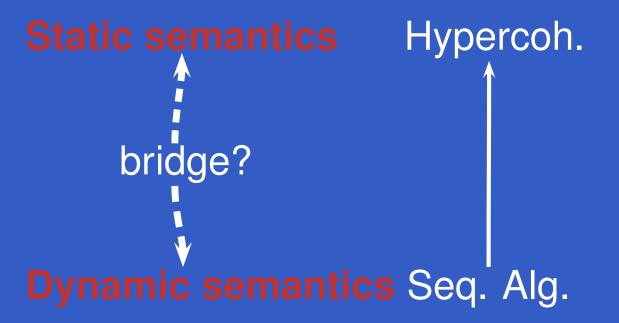




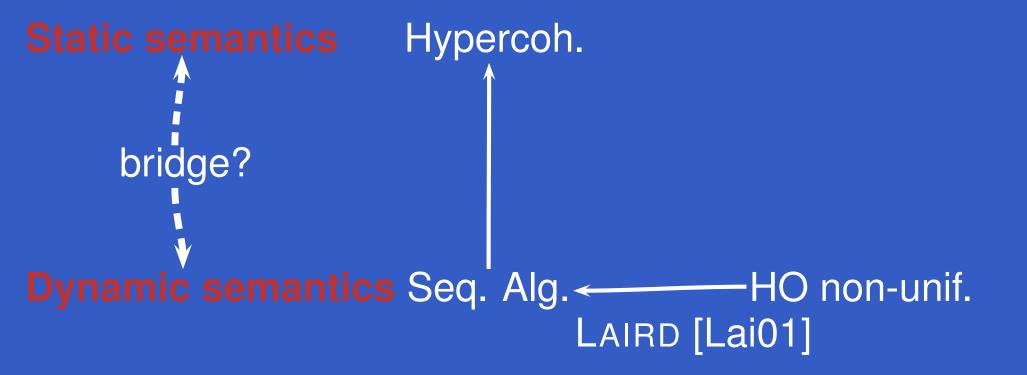
one-way bridge

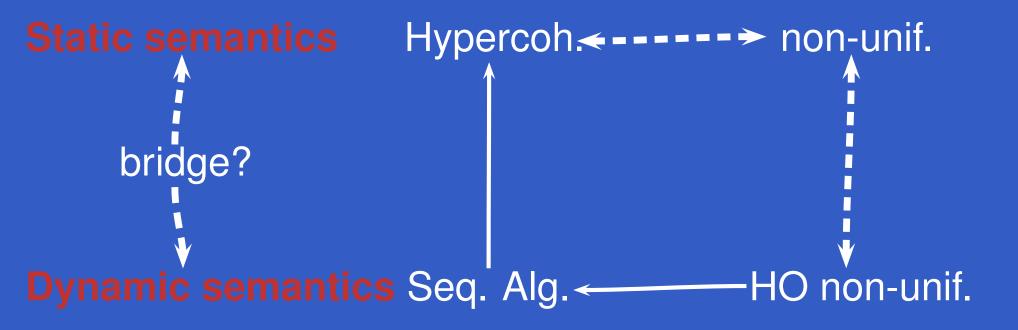


- one-way bridge
- abstract result



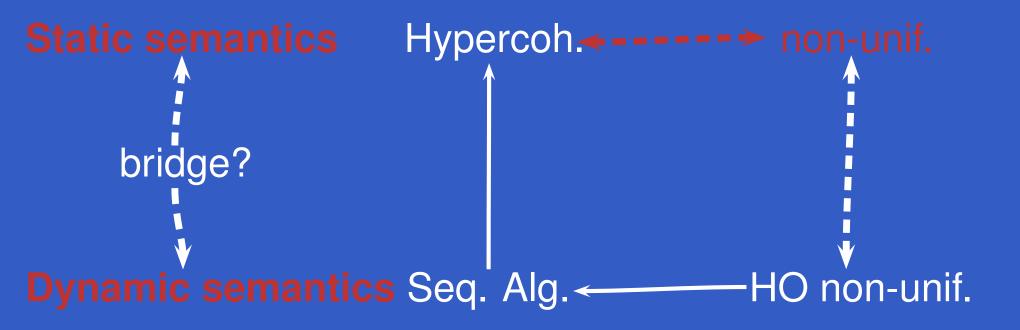
- one-way bridge
- abstract result
- Only simple types. Not the full power of linear logic.





Shifting to non-uniformity might improve the bridge

Denotational semantics



Shifting to non-uniformity might improve the bridge

Previous Next Back - p.5/13

• Coherence space $X = (|X|, \bigcirc_X)$: graph $\{[a, a] \mid a \in |X|\} \subseteq \bigcirc_X \subseteq \mathcal{M}_{\{2\}}(|X|)$

• Coherence space $X = (|X|, \bigcirc_X)$: graph $\{[a, a] \mid a \in |X|\} \subseteq \bigcirc_X \subseteq \mathcal{M}_{\{2\}}(|X|)$ • Hypercoherence $X = (|X|, \bigcirc_X)$: hypergraph $\{\{a\} \mid a \in |X|\} \subseteq \bigcirc_X \subseteq \mathcal{P}^*_{\text{fin}}(|X|)$

• Coherence space $X = (|X|, \bigcirc_X)$: graph $\{[a, a] \mid a \in |X|\} \subseteq \bigcirc_X \subseteq \mathcal{M}_{\{2\}}(|X|)$ • Hypercoherence $X = (|X|, \bigcirc_X)$: hypergraph $\{\{a\} \mid a \in |X|\} \subseteq \bigcirc_X \subseteq \mathcal{P}^*_{fin}(|X|)$ Powers

A **Power** *P* is a functor from the category of sets and inclusions to itself.

• Coherence space $X = (|X|, \bigcirc_X)$: graph $\{[a, a] \mid a \in |X|\} \subseteq \bigcirc_X \subseteq \mathcal{M}_{\{2\}}(|X|)$ • Hypercoherence $X = (|X|, \bigcirc_X)$: hypergraph $\{\{a\} \mid a \in |X|\} \subseteq \bigcirc_X \subseteq \mathcal{P}^*_{\text{fin}}(|X|)$ Reflexivity

A **Power** *P* is a functor from the category of sets and inclusions to itself.

• Coherence space $X = (|X|, \bigcirc_X)$: graph $\{[a, a] \mid a \in |X|\} \subseteq \bigcirc_X \subseteq \mathcal{M}_{\{2\}}(|X|)$ • Hypercoherence $X = (|X|, \bigcirc_X)$: hypergraph $\{\{a\} \mid a \in |X|\} \subseteq \bigcirc_X \subseteq \mathcal{P}^*_{\mathrm{fin}}(|X|)$ Reflexivity : $\cup_{a \in |X|} P(\{a\}) \subseteq \bigcirc_X$

A **Power** *P* is a functor from the category of sets and inclusions to itself.

• Coherence space $X = (|X|, \bigcirc_X)$: graph $\{[a, a] \mid a \in |X|\} \subseteq \bigcirc_X \subseteq \mathcal{M}_{\{2\}}(|X|)$ • Hypercoherence $X = (|X|, \bigcirc_X)$: hypergraph $\{\{a\} \mid a \in |X|\} \subseteq \bigcirc_X \subseteq \mathcal{P}^*_{\mathrm{fin}}(|X|)$ Reflexivity : $\cup_{a \in |X|} P(\{a\}) \subseteq \bigcirc_X$

Orthogonal : X^{\perp} $|X^{\perp}| = |X|$ and $\bigcirc_{X^{\perp}} = \Join_X$

• Coherence space $X = (|X|, \bigcirc_X)$: graph $\{[a,a] \mid a \in |X|\} \subseteq \bigcirc_X \subseteq \mathcal{M}_{\{2\}}(|X|)$ • Hypercoherence $X = (|X|, \bigcirc_X)$: hypergraph $\{\overline{\{a\} \mid a \in |X|\}} \subseteq \bigcirc_X \subseteq \mathcal{P}^*_{\text{fin}}(|X|)$ **Reflexivity** : $\cup_{a \in |X|} P(\{a\}) \subseteq \bigcirc_X$ **Orthogonal** : X^{\perp} $|X^{\perp}| = |X|$ and $\bigcirc_{X^{\perp}} = \Join_X$

Coherence space $X = (|X|, \bigcirc_X)$: graph 9 $\{[a,a] \mid a \in |X|\} \subseteq \bigcirc_X \subseteq \mathcal{M}_{\{2\}}(|X|)$ • Hypercoherence $X = (|X|, \bigcirc_X)$: hypergraph $\{\{a\} \mid a \in |X|\} \subseteq \bigcirc_X \subseteq \mathcal{P}^*_{fin}(|X|)$ **Reflexivity** : $\cup_{a \in |X|} P(\{a\}) \subseteq \bigcirc_X$ **Orthogonal** : X^{\perp} D $|X^{\perp}| = |X|$ and $\bigcirc_{X^{\perp}} = \Join_X$

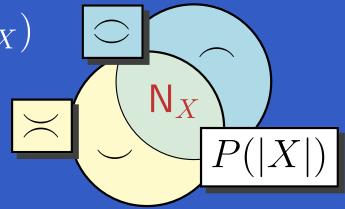
Coherence space $X = (|X|, \bigcirc_X)$: graph 9 $|\{[a,a] \mid a \in |X|\} \subseteq \bigcirc_X \subseteq \mathcal{M}_{\{2\}}(|X|)$ • Hypercoherence $X = (|X|, \bigcirc_X)$: hypergraph $\{\{a\} \mid a \in |X|\} \subseteq \bigcirc_X \subseteq \mathcal{P}^*_{\text{fin}}(|X|)$ **Reflexivity** : $\cup_{a \in |X|} P(\{a\}) \subseteq \bigcirc_X$ P**Orthogonal** : X^{\perp} $|X^{\perp}| = |X|$ and $\bigcirc_{X^{\perp}} = \Join_X$

<u>Coherence space $X = (|X|, \bigcirc_X)$: graph</u> ٩ $\{[a,a] \mid a \in |X|\} \subseteq \bigcirc_X \subseteq \mathcal{M}_{\{2\}}(|X|)$ • Hypercoherence $X = (|X|, \bigcirc_X)$: hypergraph $\{\overline{\{a\} \mid a \in |X|\}} \subseteq \bigcirc_X \subseteq \mathcal{P}^*_{\operatorname{fin}}(|X|)$ **Reflexivity** : $\bigcup_{a \in |X|} P(\{a\}) \subseteq \bigcirc_X$ • Agent $x \subseteq |X|, P(x) \subseteq \bigcirc_X$ P

• Coherence space $X = (|X|, \bigcirc_X)$: graph $\{[a,a] \mid a \in |X|\} \subseteq \bigcirc_X \subseteq \mathcal{M}_{\{2\}}(|X|)$ • Hypercoherence $X = (|X|, \bigcirc_X)$: hypergraph $\{\{a\} \mid a \in |X|\} \subseteq \bigcirc_X \subseteq \mathcal{P}^*_{fin}(|X|)$ **Reflexivity** : $\cup_{a \in |X|} P(\{a\}) \subseteq \bigcirc_X$ • Agent $x \subseteq |X|, P(x) \subseteq \bigcirc_X$ • Counter-agent $y \subseteq |X|, P(y) \subseteq \Join_X$

• Coherence space $X = (|X|, \bigcirc_X)$: graph $|\{[a,a] \mid a \in |X|\} \subseteq \bigcirc_X \subseteq \mathcal{M}_{\{2\}}(|X|)$ • Hypercoherence $X = (|X|, \bigcirc_X)$: hypergraph $\{\{a\} \mid a \in |X|\} \subseteq \bigcirc_X \subseteq \mathcal{P}^*_{\text{fin}}(|X|)$ **Reflexivity** : $\cup_{a \in |X|} P(\{a\}) \subseteq \bigcirc_X$ • Agent $x \subseteq |X|, P(x) \subseteq \bigcirc_X$ Counter-agent $y \subseteq |X|, P(y) \subseteq \Join_X$ • Determinism $\sharp(x \cap y) \le 1$

P-coherence space $(|X|, \bigcirc_X, \asymp_X)$



P-coherence space $(|X|, \bigcirc_X, \asymp_X)$ No longer reflexive. Neutrality.

Previous Next Back - p.6/13

P-coherence space $(|X|, \bigcirc_X, \asymp_X)$ No longer reflexive. Neutrality. *eg*, for the power $\mathcal{M}_{\{2\}}$, one can \succeq have both $a \bigcirc b$ and $a \asymp b$ with $a \neq b$ and also $c \frown c, d \smile d$.

P-coherence space $(|X|, \bigcirc_X, \asymp_X)$ No longer reflexive. Neutrality. *eg*, for the power $\mathcal{M}_{\{2\}}$, one can have both $a \bigcirc b$ and $a \asymp b$ with $a \neq b$ and also $c \frown c, d \smile d$.

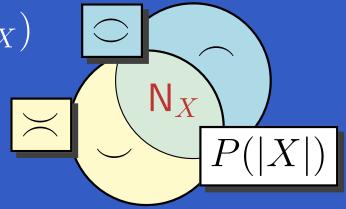
In [BE01], BUCCIARELLI & EHRHARD have set a general framework where each *phase-valued* provability semantics of an *indexed* linear logic gives a non-uniform denotational semantics of linear logic.

P-coherence space $(|X|, \bigcirc_X, \asymp_X)$ No longer reflexive. Neutrality. *eg*, for the power $\mathcal{M}_{\{2\}}$, one can have both $a \bigcirc b$ and $a \asymp b$ with $a \neq b$ and also $c \frown c$, $d \smile d$.

In [BE01], BUCCIARELLI & EHRHARD have set a general framework where each *phase-valued* provability semantics of an *indexed* linear logic gives a non-uniform denotational semantics of linear logic.

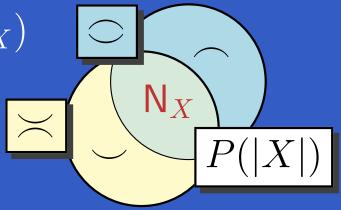
 \rightarrow a class of non-uniform coherence semantics which we describe now using the Power \mathcal{M}_K (multisets whose cardinalities are in K) where $K \subseteq \mathbb{N} \setminus \{0, 1\}$.

 \mathcal{M}_K -coherence space $(|X|, \bigcirc_X, \overleftarrow{\prec}_X)$



 \mathcal{M}_K -coherence space $(|X|, \bigcirc_X, \asymp_X)$

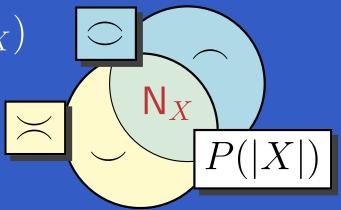
MALL model: standard pattern



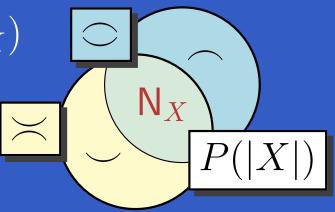
 \mathcal{M}_K -coherence space $(|X|, \bigcirc_X, \asymp_X)$

eg, $|X \multimap Y| = |X| \times |Y|$ and, for $s \in \mathcal{M}_K(|X \multimap Y|)$: $s \in \bigcirc_{X \multimap Y} \text{ iff } \begin{cases} \pi_1(s) \in \bigcirc_X \implies \pi_2(s) \in \bigcirc_Y \\ \pi_1(s) \in \asymp_X \Longleftarrow \pi_2(s) \in \asymp_Y \end{cases}$ $s \in N_{X \multimap Y}$ iff $\pi_1(s) \in N_X$ and $\pi_2(s) \in N_Y$

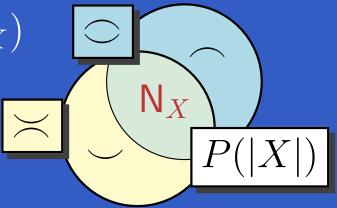
- MALL model: standard pattern
- for MALL neutrality is reflexivity



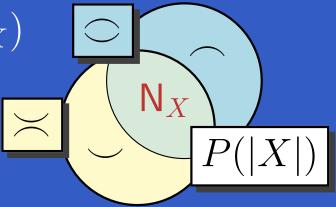
- MALL model: standard pattern
- for MALL neutrality is reflexivity
- exponentials are responsible for neutrality≠reflexivity



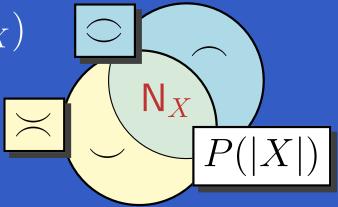
- MALL model: standard pattern
- for MALL neutrality is reflexivity
- exponentials are responsible for neutrality≠reflexivity
- the exponentials badly behaved:



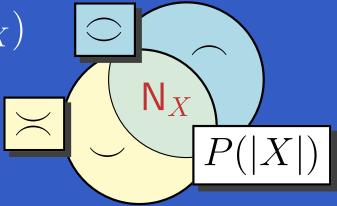
- MALL model: standard pattern
- for MALL neutrality is reflexivity
- exponentials are responsible for neutrality≠reflexivity
- the exponentials badly behaved:
 no determinism



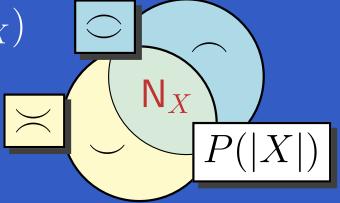
- MALL model: standard pattern
- for MALL neutrality is reflexivity
- exponentials are responsible for neutrality≠reflexivity
- the exponentials badly behaved:
 - no determinism
 - no related uniform semantics



- MALL model: standard pattern
- for MALL neutrality is reflexivity
- exponentials are responsible for neutrality≠reflexivity
- the exponentials badly behaved:
 - no determinism
 - no related uniform semantics
 - for $\mathcal{M}_{\mathbb{N}\setminus\{0,1\}}$, non sequential ag. (som. like // or)



- MALL model: standard pattern
- for MALL neutrality is reflexivity
- exponentials are responsible for neutrality≠reflexivity
- the exponentials badly behaved:
 - no determinism
 - no related uniform semantics
 - for $\mathcal{M}_{\mathbb{N}\setminus\{0,1\}}$, non sequential ag. (som. like // or)
- Hopefully, we have a better solution!



Previous Next Back - p.7/13

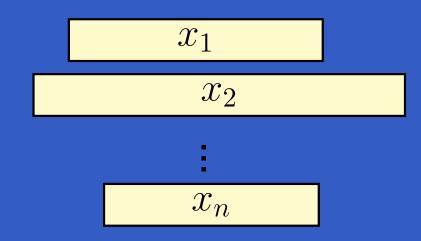
Web: $|X| = \mathcal{M}_{fin}(|X|)$

Web: $|!X| = \mathcal{M}_{fin}(|X|)$ This web is the same as for relational model, so the semantics is non-uniform. A uniform web would have been $\{x \in \mathcal{M}_{fin}(|X|) \mid \operatorname{supp}(x) \in \operatorname{agent}(X)\}$.

Web: $|!X| = \mathcal{M}_{fin}(|X|)$ Coherence. For each $[x_i \mid i \in I] \in \mathcal{M}_K(|!X|)$ we set:

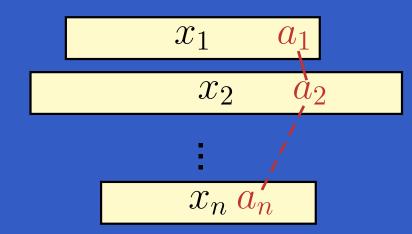
Web: $|!X| = \mathcal{M}_{fin}(|X|)$ Coherence. For each $[x_i \mid i \in I] \in \mathcal{M}_K(|!X|)$ we set:

• $[x_i \mid i \in I] \in \smile_{!X} \text{ iff } \exists [a_i \mid i \in I] \in \smile_X, \forall i \in I, a_i \in x_i$



Web: $|!X| = \mathcal{M}_{fin}(|X|)$ Coherence. For each $[x_i \mid i \in I] \in \mathcal{M}_K(|!X|)$ we set:

• $[x_i \mid i \in I] \in \smile_{!X} \text{ iff } \exists [a_i \mid i \in I] \in \smile_X, \forall i \in I, a_i \in x_i$



Web: $|!X| = \mathcal{M}_{fin}(|X|)$ Coherence. For each $[x_i \mid i \in I] \in \mathcal{M}_K(|!X|)$ we set:

• $[x_i \mid i \in I] \in \smile_{!X} \text{ iff } \exists [a_i \mid i \in I] \in \smile_X, \forall i \in I, a_i \in x_i$

• $[x_i \mid i \in I] \in \mathsf{N}_{!X}$ iff $[x_i \mid i \in I] \notin \smile_{!X}$ and $\exists (a_i^j)_{i \in I}^{j \in J}$,

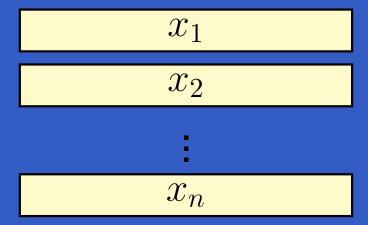
!? The exponentials

Web: $|!X| = \mathcal{M}_{fin}(|X|)$ Coherence. For each $[x_i \mid i \in I] \in \mathcal{M}_K(|!X|)$ we set:

• $[x_i \mid i \in I] \in \smile_{!X} \text{ iff } \exists [a_i \mid i \in I] \in \smile_X, \forall i \in I, a_i \in x_i$

• $[x_i \mid i \in I] \in \mathsf{N}_{!X}$ iff $[x_i \mid i \in I] \notin \smile_{!X}$ and $\exists (a_i^j)_{i \in I}^{j \in J}$,

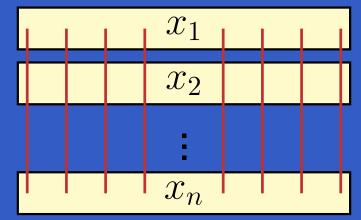
• $\forall i \in I, [a_i^j \mid j \in J] = x_i \text{ and }$



!? The exponentials

Web: $|!X| = \mathcal{M}_{fin}(|X|)$ Coherence. For each $[x_i \mid i \in I] \in \mathcal{M}_K(|!X|)$ we set:

- $[x_i \mid i \in I] \in \smile_{!X} \text{ iff } \exists [a_i \mid i \in I] \in \smile_X, \forall i \in I, a_i \in x_i$
- $[x_i \mid i \in I] \in \mathsf{N}_{!X}$ iff $[x_i \mid i \in I] \notin \smile_{!X}$ and $\exists (a_i^j)_{i \in I}^{j \in J}$,
 - $\forall i \in \overline{I, [a_i^j \mid j \in J]} = x_i$ and
 - $\forall j \in J, [a_i^j \mid i \in I] \in \mathsf{N}_X$



Non-uniform model of linear logic (logical forgetful functor).

- Non-uniform model of linear logic (logical forgetful functor).
- Co-free \otimes -comonoid. (so maximality).

- Non-uniform model of linear logic (logical forgetful functor).
- Co-free \otimes -comonoid. (so maximality).
- Determinism: $N_X \subseteq \bigcup_{a \in |X|} \mathcal{M}_K(\{a\})$

- Non-uniform model of linear logic (logical forgetful functor).
- Co-free \otimes -comonoid. (so maximality).
- Determinism: $N_X \subseteq \bigcup_{a \in |X|} \mathcal{M}_K(\{a\})$
- Stage of interaction: neutral web $|X|_{N,K} = \{a \in |X| \mid \mathcal{M}_K(\{a\}) \subseteq N_X\}$ and functor N_K of restriction to the neutral web.

- Non-uniform model of linear logic (logical forgetful functor).
- Co-free \otimes -comonoid. (so maximality).
- Determinism: $N_X \subseteq \bigcup_{a \in |X|} \mathcal{M}_K(\{a\})$
- Stage of interaction: neutral web $|X|_{N,K} = \{a \in |X| \mid \mathcal{M}_K(\{a\}) \subseteq N_X\}$ and functor N_K of restriction to the neutral web.
- $|!X|_{\mathsf{N},K} = \{x \in \mathcal{M}_{\mathsf{fin}}(|X|_{\mathsf{N},K}) \mid \operatorname{supp}(x) \in \operatorname{agent}(X)\}$

- Non-uniform model of linear logic (logical forgetful functor).
- Co-free \otimes -comonoid. (so maximality).
- Determinism: $N_X \subseteq \bigcup_{a \in |X|} \mathcal{M}_K(\{a\})$
- Stage of interaction: neutral web $|X|_{N,K} = \{a \in |X| \mid \mathcal{M}_K(\{a\}) \subseteq N_X\}$ and functor N_K of restriction to the neutral web.
- $|!X|_{\mathsf{N},K} = \{x \in \mathcal{M}_{\mathsf{fin}}(|X|_{\mathsf{N},K}) \mid \operatorname{supp}(x) \in \operatorname{agent}(X)\}$
- $l_u = N_K!$. A new class of uniform models related to the non-uniform ones in a very comfortable way.

• $[\pi]_{\mathcal{M}_K} = [\pi]_{\mathsf{R}}$ and for the related uniform semantics : $[\pi]_{u,\mathcal{M}_K} = N_K([\pi]_{\mathsf{R}}).$

• $[\pi]_{\mathcal{M}_K} = [\pi]_{\mathsf{R}}$ and for the related uniform semantics : $[\pi]_{u,\mathcal{M}_K} = N_K([\pi]_{\mathsf{R}}).$

• $K = \{2\} \rightarrow \text{coherence spaces.} \ [\pi]_{COH} = \overline{N_{\{2\}}([\pi]_R)}$

- $[\pi]_{\mathcal{M}_K} = [\pi]_{\mathsf{R}}$ and for the related uniform semantics : $[\pi]_{u,\mathcal{M}_K} = N_K([\pi]_{\mathsf{R}}).$
- $K = \{2\} \rightarrow \text{coherence spaces.} \ [\pi]_{COH} = N_{\{2\}}([\pi]_{R})$
- $K = \mathbb{N} \setminus \{0, 1\}$ \rightarrow multicoherences. Generalize hypercoherences to multiplicities aware coherence relations.

- $[\pi]_{\mathcal{M}_K} = [\pi]_{\mathsf{R}}$ and for the related uniform semantics : $[\pi]_{u,\mathcal{M}_K} = N_K([\pi]_{\mathsf{R}}).$
- $K = \{2\} \rightarrow \text{coherence spaces.} \ [\pi]_{COH} = N_{\{2\}}([\pi]_{R})$
- $K = \mathbb{N} \setminus \{0, 1\}$ \rightarrow multicoherences. Generalize hypercoherences to multiplicities aware coherence relations.

• Forget multiplicities \rightarrow non-unif. hypercoherences ($!_{nuh} = S!$). Usual (multiset-based) uniform semantics. $!_{mh} = N !_{nuh}$.

Previous Next Back - p.10/13

Multiset-based models aren't extensional

Multiset-based models aren't extensional
There is no set based non-uniform model

- Multiset-based models aren't extensional
- There is no set based non-uniform model
- Extensional collapses (using a MELLIÈS result, [Mel01]):

- Multiset-based models aren't extensional
- There is no set based non-uniform model
- Extensional collapses (using a MELLIÈS result, [Mel01]):
 - \bullet m.-based coh. sp./ \sim = s.-based coh. sp.

- Multiset-based models aren't extensional
- There is no set based non-uniform model
- Extensional collapses (using a MELLIÈS result, [Mel01]):
 - \bullet m.-based coh. sp./ \sim = s.-based coh. sp.
 - \bullet m.-based hypercoh./ \sim = s.-based hypercoh.

- Multiset-based models aren't extensional
- There is no set based non-uniform model
- Extensional collapses (using a MELLIÈS result, [Mel01]):
 - \bullet m.-based coh. sp./ \sim = s.-based coh. sp.
 - $\,$ m.-based hypercoh./ \sim = s.-based hypercoh.
 - non-unif. \mathcal{M}_K -coh./ \sim = unif. \mathcal{M}_K -coh./ \sim

- Multiset-based models aren't extensional
- There is no set based non-uniform model
- Extensional collapses (using a MELLIÈS result, [Mel01]):
 - \bullet m.-based coh. sp./ \sim = s.-based coh. sp.
 - $\,$ m.-based hypercoh./ \sim = s.-based hypercoh.
 - non-unif. \mathcal{M}_K -coh./ \sim = unif. \mathcal{M}_K -coh./ \sim
 - non-unif. coh. sp./ \sim = s.-based coh. sp.

- Multiset-based models aren't extensional
- There is no set based non-uniform model
- Extensional collapses (using a MELLIÈS result, [Mel01]):
 - \bullet m.-based coh. sp./ \sim = s.-based coh. sp.
 - $\,$ m.-based hypercoh./ \sim = s.-based hypercoh.
 - non-unif. \mathcal{M}_K -coh./ \sim = unif. \mathcal{M}_K -coh./ \sim
 - non-unif. coh. sp./ \sim = s.-based coh. sp.
 - \bullet \rightarrow s.-based multicoherences (direct description).

- Multiset-based models aren't extensional
- There is no set based non-uniform model
- Extensional collapses (using a MELLIÈS result, [Mel01]):
 - \bullet m.-based coh. sp./ \sim = s.-based coh. sp.
 - $\,$ m.-based hypercoh./ \sim = s.-based hypercoh.
 - non-unif. \mathcal{M}_K -coh./ \sim = unif. \mathcal{M}_K -coh./ \sim
 - non-unif. coh. sp./ \sim = s.-based coh. sp.
 - $\bullet \rightarrow$ s.-based multicoherences (direct description).
 - non-unif. hypercoh./ \sim = s.-based hypercoh.

Previous Next Back - p.11/13

Non-uniform semantics : non-sequential, eg, {([t], t), ([f], t), ([t, f], t)} is an agent of type !Bool --> Bool.

• Non-uniform semantics : non-sequential, eg, $\{([t],t),([f],t),([t,f],t)\}$

is an agent of type !Bool — Bool.

 Multicoherence semantics: sequentiality at first order. Every finite agent of type
 !(Bool & ... & Bool) --> Bool is definable in PCF.

• Non-uniform semantics : non-sequential, eg, $\{([t],t),([f],t),([t,f],t)\}$

is an agent of type !Bool — Bool.

 Multicoherence semantics: sequentiality at first order. Every finite agent of type
 !(Bool & ... & Bool) - Bool is definable in PCF.

 Multicoherences ≠ hypercoherences → two (extensionally) different notions of higher order sequentiality. (Contrarily to what was expected, eg in [Lon02]).

References

[BE01] A. Bucciarelli and T. Ehrhard. On phase semantics and denotational semantics: the exponentials. APAL, 109(3):205-241, 2001. [Ehr96] Thomas Ehrhard. Projecting sequential algorithms on strongly stable functions. APAL, 77, 1996. [Lai01] J. Laird. Games and sequential algorithms. Available by http, 2001. [Lon02] J.R. Longley. The sequentially realizable functionals. APAL, 117(1-3):1-93, 2002. [Mel01] Paul-André Melliès. Extensional collapse and coercions. Manuscript, December 2001.

References

[BE01] Antonio Bucciarelli and Thomas Ehrhard. On phase semantics and denotational semantics: the exponentials. *Annals of Pure and Applied Logic*, 109(3):205–241, 2001.

[Ehr96] Thomas Ehrhard. Projecting sequential algorithms on strongly stable functions. *Annals* of Pure and Applied Logic, 77, 1996.

[Lai01] J. Laird. Games and sequential algorithms. Available by http, 2001.

[Lon02] J.R. Longley. The sequentially realizable functionals. Annals of Pure and Applied Logic