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What’s this talk about?

Denotational semantics (of λ-calculus, PCF, LL)

proofs, terms → some math. structures: agents

sequentiality & determinism. No concurrency

Internal interactivity of calculus

extensionality (PER), extensional collapse (quotient)

uniformity: the stage where agents interact

Exponential modalities of linear logic (! and ?)

resource management

complexity issue (ELL, LLL), polarities, . . .
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Uniformity at a first sight

P = λb. if b then { if b then t1 else t2 }

else { if b then t3 else t4 }

P:Bool → Bool ∼= !Bool Bool

ti
• ∈ {t, f}
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Uniformity at a first sight

P = λb. if b then { if b then t1 else t2 }

else { if b then t3 else t4 }

P:Bool → Bool ∼= !Bool � Bool

ti
• ∈ {t, f}

Coherence spaces and hypercoherences semantics
(set-based) are uniform

P • = {({t}, t1
•), ({f}, t4

•)}
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Uniformity at a first sight

P = λb. if b then { if b then t1 else t2 }

else { if b then t3 else t4 }

P:Bool → Bool ∼= !Bool � Bool

ti
• ∈ {t, f}

Relational semantics is non-uniform

P • = {([t, t], t1
•), ([t, f], t2

•), ([t, f], t3
•), ([f, f], t4

•)}
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Uniformity at a first sight

P = λb. if b then { if b then t1 else t2 }

else { if b then t3 else t4 }

P:Bool → Bool ∼= !Bool � Bool

ti
• ∈ {t, f}

Multiset-based coherence spaces and
hypercoherences semantics are also uniform

P • = {([t, t], t1
•), ([f, f], t4

•)}
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Denotational semantics

Static semantics

: Agents are sets of points
additives → disjoint unions, ∅

multiplicatives → product of sets, {∗}

|A B| = |A B| = |A ⊗ B| = |A| × |B|

Dynamic semantics

: Agents are sets of pol. paths
additives → disjoint unions, ∅

multiplicatives→ interleaving of paths, {ε}, {∗O}, {∗P}

exponentials → interleaving of paths in agents
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Denotational semantics

Static semantics: Agents are sets of points
additives → disjoint unions, ∅

multiplicatives → product of sets, {∗}

exponentials → finite sets or multisets, agents
Dynamic semantics: Agents are sets of pol. paths

additives → disjoint unions, ∅

multiplicatives→ interleaving of paths, {ε}, {∗O}, {∗P}

exponentials → interleaving of paths in agents
uniformity
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Denotational semantics

Static semantics

bridge?

Dynamic semantics
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Denotational semantics

Static semantics Hypercoh.

bridge? Ext. Coll. EHRHARD [Ehr96]

Dynamic semantics Seq. Alg.
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Denotational semantics

Static semantics Hypercoh.

bridge?

Dynamic semantics Seq. Alg.

PER ∼. Equality on basis types and :

f ∼A→B g iff x ∼A y =⇒ f(x) ∼B f(y) (∀x, y)

The extensional collapse of a model M is M/ ∼.
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abstract result

Only simple types. Not the full power of linear logic.
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Denotational semantics

Static semantics Hypercoh.

bridge?

Dynamic semantics Seq. Alg. HO non-unif.
LAIRD [Lai01]
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Uniform spaces

Coherence space X = (|X|, _̂X): graph

{[a, a] | a ∈ |X|} ⊆ _̂
X ⊆ M{2}(|X|)

Hypercoherence X = (|X|, _̂X): hypergraph

{{a} | a ∈ |X|} ⊆ _̂
X ⊆ P∗

fin(|X|)

Reflexivity
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Hypercoherence X = (|X|, _̂X): hypergraph

{{a} | a ∈ |X|} ⊆ _̂
X ⊆ P∗

fin(|X|)

Reflexivity

Powers

A Power P is a functor from the category of sets and
inclusions to itself.
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fin(|X|)

Reflexivity : ∪a∈|X|P ({a}) ⊆ _̂
X

A Power P is a functor from the category of sets and
inclusions to itself.
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Agent x ⊆ |X|, P (x) ⊆ _̂
X

Counter-agent y ⊆ |X|, P (y) ⊆ _̂X

Determinism ](x ∩ y) ≤ 1
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Non-uniform spaces

P -coherence space (|X|, _̂X , _̂X) _̂

_̂
P (|X|)

NX

^

_
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eg, for the power M{2}, one can
have both a _̂ b and a _̂ b with
a 6= b and also c _ c, d ^ d.
In [BE01], BUCCIARELLI & EHRHARD have set a general
framework where each phase-valued provability seman-
tics of an indexed linear logic gives a non-uniform deno-
tational semantics of linear logic.
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Non-uniform spaces

P -coherence space (|X|, _̂X , _̂X) _̂

_̂
P (|X|)

NX

^

_
No longer reflexive. Neutrality.
eg, for the power M{2}, one can
have both a _̂ b and a _̂ b with
a 6= b and also c _ c, d ^ d.
In [BE01], BUCCIARELLI & EHRHARD have set a general
framework where each phase-valued provability seman-
tics of an indexed linear logic gives a non-uniform deno-
tational semantics of linear logic.

→ a class of non-uniform coherence semantics which
we describe now using the Power MK (multisets whose
cardinalities are in K) where K ⊆ \{0, 1}.
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Non-uniform spaces

MK-coherence space (|X|, _̂X , _̂X) _̂

_̂
P (|X|)

NX

^

_

MALL model: standard pattern

eg, |X � Y | = |X| × |Y | and, for s ∈ MK(|X � Y |):

s ∈ _̂
X �Y iff

{

π1(s) ∈ _̂
X =⇒ π2(s) ∈ _̂

Y

π1(s) ∈ _̂X ⇐= π2(s) ∈ _̂Y

s ∈ NX �Y iff π1(s) ∈ NX and π2(s) ∈ NY
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for MALL neutrality is reflexivity

exponentials are responsible for
neutrality6=reflexivity

the exponentials badly behaved:

no determinism
no related uniform semantics
for M \{0,1}, non sequential ag. (som. like // or)
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Non-uniform spaces

MK-coherence space (|X|, _̂X , _̂X) _̂

_̂
P (|X|)

NX

^

_

MALL model: standard pattern

for MALL neutrality is reflexivity

exponentials are responsible for
neutrality6=reflexivity

the exponentials badly behaved:
no determinism
no related uniform semantics
for M �

\{0,1}, non sequential ag. (som. like // or)

Hopefully, we have a better solution!
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The exponentials

Web: |!X| = Mfin(|X|)
Coherence. For each [xi | i ∈ I] ∈ MK(|!X|) we set:

[xi | i ∈ I] ∈ ^!X iff ∃[ai | i ∈ I] ∈ ^X ,∀i ∈ I, ai ∈ xi

[xi | i ∈ I] ∈ N!X iff [xi | i ∈ I] /∈ ^!X and ∃(aj
i )

j∈J
i∈I ,

∀i ∈ I, [aj
i | j ∈ J ] = xi and

∀j ∈ J, [aj
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Properties

Non-uniform model of linear logic (logical forgetful
functor).

Co-free ⊗-comonoid. (so maximality).

Determinism: NX ⊆ ∪a∈|X|MK({a})

Stage of interaction: neutral web
|X|N,K = {a ∈ |X| | MK({a}) ⊆ NX} and functor
NK of restriction to the neutral web.

|!X|N,K = {x ∈ Mfin(|X|N,K) | supp(x) ∈ agent(X)}

!
u

= NK !. A new class of uniform models related

to the non-uniform ones in a very comfortable way.
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Semantics

[π]MK
= [π]R and for the related uniform semantics :

[π]u,MK
= NK([π]R).

K = {2} → coherence spaces. [π]COH = N{2}([π]R)

K = \{0, 1} → multicoherences. Generalize
hypercoherences to multiplicities aware coherence
relations.

Forget multiplicities → non-unif. hypercoherences
( !
nuh

= S!). Usual (multiset-based) uniform

semantics. !
mh

= N !
nuh

.

Previous Next Back – p.9/13



Semantics

[π]MK
= [π]R and for the related uniform semantics :

[π]u,MK
= NK([π]R).

K = {2} → coherence spaces. [π]COH = N{2}([π]R)

K = \{0, 1} → multicoherences. Generalize
hypercoherences to multiplicities aware coherence
relations.

Forget multiplicities → non-unif. hypercoherences
( !
nuh

= S!). Usual (multiset-based) uniform

semantics. !
mh

= N !
nuh

.

Previous Next Back – p.9/13



Semantics

[π]MK
= [π]R and for the related uniform semantics :

[π]u,MK
= NK([π]R).

K = {2} → coherence spaces. [π]COH = N{2}([π]R)

K = \{0, 1} → multicoherences. Generalize
hypercoherences to multiplicities aware coherence
relations.

Forget multiplicities → non-unif. hypercoherences
( !
nuh

= S!). Usual (multiset-based) uniform

semantics. !
mh

= N !
nuh

.

Previous Next Back – p.9/13



Semantics

[π]MK
= [π]R and for the related uniform semantics :

[π]u,MK
= NK([π]R).

K = {2} → coherence spaces. [π]COH = N{2}([π]R)

K = \{0, 1} → multicoherences. Generalize
hypercoherences to multiplicities aware coherence
relations.

Forget multiplicities → non-unif. hypercoherences
( !
nuh

= S!). Usual (multiset-based) uniform

semantics. !
mh

= N !
nuh

.

Previous Next Back – p.9/13



Semantics

[π]MK
= [π]R and for the related uniform semantics :

[π]u,MK
= NK([π]R).

K = {2} → coherence spaces. [π]COH = N{2}([π]R)

K = \{0, 1} → multicoherences. Generalize
hypercoherences to multiplicities aware coherence
relations.

Forget multiplicities → non-unif. hypercoherences
( !
nuh

= S!). Usual (multiset-based) uniform

semantics. !
mh

= N !
nuh

.

Previous Next Back – p.9/13



Extensionality

Multiset-based models aren’t extensional

There is no set based non-uniform model

Extensional collapses (using a MELLIÈS result,
[Mel01]):

m.-based coh. sp./ ∼ = s.-based coh. sp.
m.-based hypercoh./ ∼ = s.-based hypercoh.
non-unif.MK-coh./ ∼ = unif. MK-coh./ ∼

non-unif. coh. sp./ ∼ = s.-based coh. sp.
→ s.-based multicoherences (direct description).

non-unif. hypercoh./ ∼ = s.-based hypercoh.
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Sequentiality

Non-uniform semantics : non-sequential, eg,

{([t], t), ([f], t), ([t, f], t)}

is an agent of type !Bool Bool.

Multicoherence semantics: sequentiality at first
order. Every finite agent of type
!(Bool & . . . & Bool) Bool is definable in PCF.

Multicoherences 6= hypercoherences → two
(extensionally) different notions of higher order
sequentiality. (Contrarily to what was expected, eg
in [Lon02]).
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