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Uniformity at a first sight

P = MXb. if b then { 1
else {

P:Bool — Bool = 'Bool — Bool
t;° € {t, f}

Multiset-based coherence spaces and
hypercoherences semantics are also uniform

P* = {([t,t],t:*), ([£,£],44°)}
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Denotational semantics

Hyperconh.
A A
bridge?
\
\/
Seq. Alg.

one-way bridge
abstract result
Only simple types. Not the full power of linear logic.
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Non-uniform spaces

(lX‘aonxX)

No longer reflexive. Neutrality. = ‘
eg, for the power Mgy, one can

have both ¢ < b and a < b with P(1X1])
a#bandalsoc —~c¢,d— d.

In [BEO1], BUCCIARELLI & EHRHARD have set a general
framework where each phase-valued provability seman-
tics of an indexed linear logic gives a non-uniform deno-
tational semantics of linear logic.

— a class of non-uniform coherence semantics which
we describe now using the Power (multisets whose
cardinalities are in K) where K C N\{0, 1}.
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Non-uniform spaces

(1X], ©x, =x)

MALL model: standard pattern W'
P(1X])

eg, | X - Y|=|X|x|Y]and, fors € Mg(|X —Y|):

/

7'('1(8) c Cxy — 72(8) c Cy

s € Cx_oy Iff <
71(8) c Xy < 7'('2(8) c Xy

\

s € Ny_oy Iff 7'('1(8) c Ny and 7T2(S) c Ny
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Non-uniform spaces

(|‘X‘7©X7x

) ‘
MALL model: standard pattern w
P(X )

for MALL neutrality is reflexivity

exponentials are responsible for
neutrality=#£reflexivity
the exponentials badly behaved:

- no determinism

- no related uniform semantics

- for My 0.1, non sequential ag. (som. like // or)

Hopefully, we have a better solution!
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- |IX] = Miin (1X])
. Foreach |z; |1 € I| € Mk(]!X]) we set:

xi|iel]le—xiffdla; |iel] e —x,Viel, a; €x;

z; | i€ 1] € Nix iff [2; | i € I] ¢ —1x and 3(a])!].

Viel,[al | je J = and
Vj e Jlal |iel]eNy
NN RN
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Properties

Non-uniform model of linear logic (logical forgetful
functor).

Co-free ®-comonoid. (so maximality).
: Nx C U xMxk({a})

Stage of interaction:
| X|ng =1a € |X]| | Mg({a}) C Nx} and functor
Ny of restriction to the neutral web.

!X |ng =12 € Min(| X |nk) | supp(z) € agent(X)}
| = Ng!. related
to the non-uniform ones in a very comfortable way.
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Semantics

7T\, = |7]g @nd for the related uniform semantics :
e = Ne([lg)-

K = {2} — coherence spaces. [7]soy = N2y ([7])

K =N\{0,1} — . Generalize
hypercoherences to multiplicities aware coherence
relations.

Forget multiplicities —

( !h — S!). Usual (multiset-based) uniform
semantics. | =N ! .

mh nuh
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Sequentiality

eg,
(el e), ([£], 1), (It £, £) )

IS an agent of type !Bool — Bool.

Every finite agent of type
|(Bool & ... & Bool) — Bool is definable in PCF.

Multicoherences # hypercoherences — two
(extensionally) different notions of higher order
sequentiality. (Contrarily to what was expected, eg
in [Lon02]).
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