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Abstract. We relate the dynamic semantics (games, dealing with interactions)
and the static semantics (dealing with results of interactions) of linear logic with
polarities, in the spirit of Timeless Games [1].

The polarized game semantics is full and faithfull for polarized praaé {2]. We
detail the correspondence between cut free proof-nets and inrgicatiegies, in

a framework related to abstract Bohm trees.

A notion of thick subtree allows us to reveal a deep relation between plays in
games and Girard’s experiments on proof-nets. We then define quisgliz-

ing operation, forgetting time in games which coincides with the usual way of
computing a result of interaction from an experiment. We then obtain oim ma
result: desequentializing the game interpretation of a polarized progfie¢lds

its standard relational model interpretation (static semantics).

Introduction

Denotational semantics interpretp@gram (a proof or a\-term) as a structure repre-
senting all its possible interactions (via cut eliminat@rvia S-reduction) with others
programs. In static semantics only thesult of the interaction is represented. In dy-
namic semantics (games) an interaction is fully represebyea sequence (play) of
actions (moves) of the program (the Player) and the enviemtrfthe Opponent).

There are many references for game semantics. For an istiodusee [3]. In this
paper, we use Hyland-Ong style polarized games [4]. In saofeg, a move can justify
itself by pointingto a preceding move. Laurent proved that polarized gamerstizads
full and faithful [2], for the proof-nets of LLpol the polared fragment of linear logic
(expressive enough to encode simply-typedalculus).

Proof-nets have been introduced together with linear Ifgjias a more parallel
syntax than sequent calculus. Experiments on proof-nets (6] for an extensive
study) provide the same denotations as the categoricapmetation of the correspond-
ing sequent calculus proofs. The static interpretation mio@f-net is the set aesults
of experimentsn this proof-net.

The comparison between static and dynamic semantics isgiyranotivated by
Ehrhard’s result ([7]) stating that the extensional calapf sequential algorithms (a
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game model) is the hypercoherences semantics (a statimges)aln [8], by introduc-
ing a suitable game semantics (extensional games), P.-Aieblgives a fine-grained
analysis of this result which better details the extendiooatent of games.

We focus here on providing a simple mathematical framewaoitakle for a direct
extraction of the static semantics from the dynamic one.

The relational modelis the genericstatic semantics of linear logic, in the sense
that the others are generally derived from this one by intcotty new ingredients (like
various coherence relations, see [9]). In that very simphaantics, formulee are sets
and proofs are relations.

Syntax A naiveapproach to the comparison is to consider
pd an operationD which maps a play (an interaction) to
games- ) static semantics g element in a set oésults as in Figure 1. The diffi-
playlf» rgsult culties are then: (i) to build a static semantics with sets
Fig. 1. ProjectionD of results(a natural candidate is the relational model);
(i) to turn D into alogical map,i.e. such that the diagram commutes for proofs.

This approach is successfully used in [1], by introducinges static semantics,
the (bi)-polarized pointed relational modeand in [10], by introducing a new game
semanticsbordered gamewhere plays explicitly carry results of interactions.

In this paper, we clarify the relation between syntax, statid dynamic semantics,
without using models specially designed for the purposbk@ptojection. We introduce
a desequentializatio® of justified plays, for which the source is Laurent’s poladz
games, and the target is the standard relational modeledrilogic. The desequential-
ization maps a play to the tree of its justification pointevith is a thick subtree of
the formula, see below).

The desequentialization introduced here may be used inefuwtarks to push some
properties of game semantics through the time forgetfykeptmn D or conversely to
pull some conditions of the static semantics at the games. lev

In polarized games, proofs are interpreted as finib®cent strategiesSuch strate-
gies can be presented as finitees of Player’s viewsTrees of P-views are particular
instances olbstract Bohm tree11,12]). When it comes from the interpretation of a
proof, a tree of P-views can be thought of as an abstract miaeen of the Béhm tree
of a simply typedi-term. (Pointers represent variables binding).

Since the polarized game semantics is full and faithfukdref P-views are in a
bijective correspondence with cut free polarized prodsrd the same type. By ana-
lyzing the shape of cut free proof-nets, we detail this apomdence in a very direct
way (comparatively to [2]). To do so, we restrict oursehethie additive free fragment
MELLpol of LLpol. This minimize the complexity of the defimiin of proof-nets, at a
low cost, since additives can (almost) be encoded in MELLpol

Here is a sketch of the corresponderdceObviously, the Reader unfamiliar with
proof-nets and games will find the definitions in the body ef plaper.

A tree of P-viewsp is a finite treel,, together with two more datum: a namirfg
of nodes by moves (a node is an occurrence of a move) and @retat, on nodes
specifying justification pointers between moves.

A MELLpol proof-netr is also a finite tre€’; (the tree representing the nesting of
I-boxes) but together with: a labeling, of nodes byflat proof structuregwhich are
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Fig. 2. Desequentialization

finite oriented graphs with pending edges) and a strudibife B,;) relating flat proof
structures to each others (the frontiers of toxes).

When is in normal form (cut free) and is the strategy interpreting, the cor-
respondenc& establishes a tree isomorphism betwé@én(the !-boxes tree) and the
tree of P-views,,. Moreover each flat proof structure nthas a very particular shape:
it only consists of oneombinedpositive connective (a tensor of of course) and one
combinednegative connective (a par of why not) together with edgesecting them
or going through the frontiers d¢fboxes. Througl¥, moves oft, correspond to these
combinedconnectives and pointers are just another way to draw theemimg edges.

We introduce in Section 1 the core ingredient of the papernttion ofthick sub-
treg a generalization of the usual notion of rooted subtree. ¥éethick subtrees both
at the term level and at the type level. The desequentiaizatlates the two levels.

Type leve(Section 2). A MELLpol formulad can be thought of as a tree: agena
in games. The desequentialization of a playiis a particular thick subtree of. And
there is a (bijective) encoding of thick subtreesdiinto the set of results of typd.

Term level(Section 3). Thick subtrees are used at the term level botapeesent
experiments in proof-nets and to expressitiiensic dynamioof plays of a strategy.

The desequentializatioP factors into a negative paf— followed by a positive
part D* (Fig.2). If p is a play in an innocent strategythen D~ (p) is a thick subtres
of t,. Conversely, any thick subtreeof ¢, can be lifted into many plays in. This is
just a matter of extending the tree ordersafto a well-shaped total order. Intuitively,
the tree order of corresponds to the internal dynamic of the program (pegiilayer)
that one will find in any interaction between this program amdenvironment. The
new part of the order is then provided by the environmentdtiegfOpponent) during
a possible interaction.

An experiment in a proof-netr is just a thick subtree of 7', together with an ar-
bitrary valuationv of axioms. By extending the correspondedcbetween proof-nets
and trees of P-views to their thick subtrees, we show thapdtisitive desequentializa-
tion DT of s (together withv) is the result of the experiment This proves that the
desequentialization is a functor which maps a finite innbstrategy (a set of plays) to
the static interpretation of the corresponding proof-net.

Figure 2 sketches the full picture we then obtain.
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1 Trees and thick subtrees

(1.a) Trees.Let us recall some basis definition about trees. A finite tiee partial or-
der (I, <;), wherel, is afinite set, called here tlredexing set having a least element
(the root), and such thatif <, c andb <; cthena <; borb <; a. In the sequel, trees
will all be finite. The associated precedence relation is denotedb{goa <} b means
thata <; banda <; ¢ <, b = ¢ = a orc = b). Hence the sons of a nodeare the
nodesh such thata <; b. An ordered tree is a tree together with, for each nodea
total order<, on the sons of.
(d,0) (¢,0) (d,1) (d,2) cd (@b) Thick subt_rees.A tree morphism f
NS / t — t'is a functionf : I; — I which maps
(b,0) (b, 1) b ¢ theroot oft to the root oft” and such that if
/ . \ a <t bthenf(a) <}, f(b). An ordered tree
(a,0) o morphism is a tree morphism preserving the
order on sons. Ahick subtree of a treet is a
Fig. 3. An example of thick subtree trees together with a tree morphisyh: s — t.
The terminology is reminiscent from the fact that differantles ofs can be mapped to
the same node af Typically, in Figure 3, the |.h.s. tree together with thetfjprojection
function, is a thick subtree of the r.h.s. tree. ObserveHan f is injective, s is just
a non empty rooted subtree ofup to an explicit renaming of nodes).tAick subtree
morphism between two thick subtreés, f) and(s’, f’) of a (same) ordered treds a
tree morphisny : s — s’ such thatf’ = f o g. If there exists an injective thick subtree
morphismyg : (s, f) — (s', ') then(s, f) is less thar{s’, f'). This defines an order on
thick subtrees.

(1.c) Re-indexing.In this paper, indexing sets are irrelevantie work on trees, se-
quences, ordered trees and thick subtrees up to isomorfttsthe respective notions
of morphism). A concrete representation of ordered treegvisn by the grammar:
t:=(t1,...,t,) (an ordered tree is a tuple of ordered trees.) We also useltbesing
convention for indexing an ordered tree. The indexing/sés$ a set of words of inte-
gers. The root of is the empty word and if w is a node having sons, then these sons
arew - 1, ...,w - n, in that order. The tree order dh is then the prefix order. More
generally, a set of words defines a tree (by prefix closure).

2 Types

Formulae of multiplicative exponential linear logic withlpdties (MELLpol) are given
by:

N:=?Xt|L|N®N|?P (negative formulze)
P=1X|1|P®P|IN (positive formulae)

with the usual De Morgan laws for the orthogofial)- and whereX is any element of
a given set of atomy¥. Here, as in [2], atomsX, X ) are not formulee. This restriction
is necessary for obtaining the faithfulness of the game s@osa For the same reason,
MELLpol proof-nets (see Section 3) require the introduttidaflat () modality which



does not belong to MELLpol and which can be thought of aghg not(?) modality,
in semantics. The flat notation is used here to ensure thahtiteeluctions of? in a
proof-net are postponed as late as possible.

(2.a). The relational interpretation of a formul& is a countable set, denot¢d| and
called theweb of A. The web ofA" is always the same as the web 4f The web
of 1 (and the web ofl) is the singleton sef«}, (this set is intended to ke neutral
element of the Cartesian product of setsxsshall be thought of as a notation for the
empty tuple). The web off ® B (or of A % B) is |A| x |B|. The web of!A (or of
?A) is the set of finite multisets of elements|ef|. For each atonX € V), an arbitrary
enumerable set is chosen as web (bothXoand its orthogonal). For convenience, we
also setbA| = |7A|.

To avoid some bureaucratic aspects, we will work on MELLgoka@ associativity
and neutrality of multiplicatives. In the relational modeslis amounts to working up to
associativity of the Cartesian product and neutrality-o.

2.1 Arenas and the desequentialization

An arena A is a labeled ordered finite forest together with a polaritysifive or neg-
ative. For the game semantics of MELLpol, we restrict omelto finite trees. The
labeling function is denoted 4. The labels of leaves are element9bf) {x} and the
labels of other nodes are all equakto

The polarity of the arena is extended to moves by choosingdleity of the arena
for the root and by saying that two successive nodes haverelift polarities. This
corresponds to the usual Player/Opponent polarity aswsti@ositive corresponds to
Player and negative to Opponent.

Basically, in MELLpol, the arena associated with a formdle the syntactic tree of
this formula, up to associativity and neutrality of muligaltives and where exponentials
shift polarities.

(2.b) Arena of a formula. Let A be a formula. The arena {1+ 112+(X)
of A is defined as follows. The polarity of the arenaas- \
sociated toA is the polarity of the formula. The tree of 117 217 (X) 22—
A and of A+ are equal. The tree df or of an atomX N/

is the tree reduced to one nodg: If ¢ is the tree ofN L 2" 37
then(¢) is the tree of V. If (¢4,...,¢,) is the tree ofP \g//
and(t, ..., t,) is the tree ofP’ then the tree of’ @ P’ _

iS (t1,...,tp,t},...,t,). We adopt the canonical local- Fig.4.The arena ofVy

ization of ordered trees on arenas. The labels are chosértlsaicthe label of a node
coming from an atomX or X+ is X and the labels of the others nodes areCon-
versely, every arena is the arena of a unique formula. Waduitlentify arenas and
formulee. Figure 4 shows the arenalgf = ?!1(?1 X ?X+) B ?(!X ® ! L) & 71 with the
relevant part of the labeling.

(2.c).In the arena of a formula, each sub-formula ofi corresponds to a move. Two
sub-formulee can correspond to a same mouaut, for each move, there isnaaximal
sub-formula F'(a) of A corresponding ta. For instance, the first occurrence?dfin
Ny corresponds to the movd, but F/(11) is 71 28 ?7.X .



(2.d). A legal justified tree (LJT, for short) onA is a finite treg(1, <) together with a
labeling functionf : I — I, and apointingrelation«— such that: (i)(1, —*, f) is a
thick subtree of4; (ii) < extends the order-* (i.e.«—* C <); and (iii) <! alternates
between positives and negatives. We consider that pelanitktend to elements éf
by saying that the polarity of € I is the polarity off(a). So the sef is the disjoint
union of a set of negative nodds and a set of positive nodds . Observe that (ii)
implies that— alternates betweefi andI* (as<'). The notion of LJT encompasses
the game notion dkgal play A legal playis a LJT whergI <) is a total order.

(2.e).Observe that a LJT has two tree structurdd;, <;) and (I, —;). We implicitly
generalize some notions on trees (e.g. thick subtrees afidg®) to LJT by considering
that(I;, <;) isthe treeof the LJT¢. If ¢ is a LJT, a thick subtre@l;/, <, g) of (I, <;)
inherits a LJT structuré—,, fi-) from ¢ by setting:f = f; o g and ifa <, b and
g(a) «¢ g(b) thena — b.

Definition 1. ThedesequentializatiorD(t) of a LITt = (I, <,«, f) on an arenaA
is just the thick subtreél, < *) of A.

(2.). A thick subtreg(t, f) is equitable whent has as many positive nodes as negative
nodes. Observe that the thick subtree associated with anlength, legal play is equi-
table. Conversely if a thick subtrée f) of an arenad is equitable then there exists a
total order extending into an even length legal play. (Proof by cases on the number o
leaves and internal nodesobf each polarity).

(2.g) Valuation (atoms).Let A be a formula. Let(t, f) be a thick subtree ofi. A
valuation v of (¢, f) is a partial labeling of nodes ofgiven by the choice of an element
x of the web ofX, for each node of ¢ such thatvs(f(a)) = X (in that casef(a) is
a leaf of A anda is a leaf oft). When f(a) is a leaf ofA anda 4 (f(a)) = * we set
v(a) = *. S0, each node of ¢ such thatf(a) is a leaf of A and no other is labeled.

A result of typeA can be seen as a concrete representation of a valuated tiick s
trees ofA. This representation commutes to the orthogonal. An elemeh| X | (resp.
x € |1]), is simply the unique thick subtree of the trge together with the valuation
mapping its unique node to (resp.x). Leta = ([as,...,a} ],...,[a},... af ]) be
an element of P| whereP isIN; ® ... ® INy (IV; can be an atom). For eath< ¢ < k
and for each < j < n;, aj- is an element of the web d¥;, SOaj- represents a valuated

thick subtreg(t!, f/, /) of N;. The valuated thick subtree representedibiy then the
tree(t, ... ,t,’,jk) (seerunordered together with: the functioff mapping its root to the

root of the arena oP and equal & f/ on the other nodes; and the valuatiphw! .

Proposition 2. Let A be a formula. The s&fTST(A) of valuated thick subtrees of
is equal to the web ofl.

Direct, by induction onA. So, the desequentialization of a legal play4together
with a valuation is an element of the web 4f

3 Terms (proof-nets)

(3.a).A flat proof structure R is a finite directed graph, built using links of Figure 5,
with at least one pending outgoing edges, called the coiocileddges. A label of an



edge is either a formula, positivé’( Q) or negative {V, M) or an atom {) or its
orthogonal §+), or aflat formulabF’, whereF (or G) is either a positive formula or
the orthogonalX+ of an atom (saF+ or G+ is either a negative formula or an atom
X) When connecting two links by an edge, the two labels of thadust match.
Polarities of MELLpol for-
P N bE lF mulae extend to labels as fol-
lows. AtomsX are negative,
P ®Q N 3 M bF their orthogonal are positive
and flat formulae are negative.
LR Inalink, an outgoing edge is
yen bF oF L J a conclusionand an incom-
: A & Xl X @ ing edge is gremise Inf!-
link, the edge labelet{z— is
Fig. 5. Links of flat proof structures the front conclusiorand the
others edges are thauxiliary conclusionsThere is oné-link (resp.?-link) for each
natural number of auxiliary conclusions (resp. premiseég).’-links and!-link the or-
dering of incoming and outgoing edges is irrelevant (to rehii we draw them with a
double line).
Observe thatR is acyclic, because for each link, the label of each conciuss
strictly bigger than the label of each premise.
(3.b) Correctness criterion.A flat proof structurer is correct if: (i) the graph obtained
(starting fromR) by inversion of every edge with a positive label is acyciad (ii)
either R contains no flat linki{) and has exactly one positive conclusionbcontains
exactly one flat link and has only negative conclusions [13].
(3.c).A l-box (Ry, Br) for al-link L is a correct flat proof structu®;, together with a
one to one correspondenBg, between the conclusion edges/of and the conclusions
of L such that: the conclusion label&@+ of L (its front conclusion) is the image of a
conclusion edge oR labeled byG; and the other edges’ labels are preserved.
Definition 3. A proof-netr is a finite treeT" and three labeling function®, S, B of
nodes ofl" such that:
— for each noden of T', R(n) is a correct flat proof structure and(n) is a one to

one correspondence between the sons ad the!-links of R(n);
— if n’isa son ofn in T' then(R(n'), B(n')) is al-box for thel-link S(n)(n’).

We do not make any requirement on the lapet) of the rootr of : this label is
just here to ease the writing of the definition and it can belgdbrgotten.

Observe that, if. is a node of a proof-net = (T, R, S, B) and if T,, is the maximal
subtreeT;, of ¢ with rootn, thenn,, = (T, Rr,, S1,, Bir,) is a proof-net.

The conclusions of a proof-net are the conclusions of itsdiat proof structure.
A MELLpol proof-net is a proof-net where conclusions are not atoms or flat formulee

We do not describe the cut elimination procedure on LLpobpreets [13].

3.1 Relational semantics

(3.d). An experimenton a flat proof structuré is a labeling functiore on edges of?
such that:



— if a is a conclusion of an axiom link introducing an atoty and if its other con-
clusion isb thene(a) = e(b) ande(a) € | X|;

— if a is the front conclusion of &link and by, ..., b, are the auxiliary conclusions,

labeled respectively bWV, bF1, ... b F, then for eachi, e(b;) is a multiset of points

of |F;| ande(a) is a multiset of points ofN|;

if a is the conclusion of @-link or of a L-link thene(a) = x;

if a1 anda, are the first and the second premises aigithe conclusion of &-link

or of a®¥-link thene(a) = (e(ay), e(asz));

if a is the premise antlis the conclusion of &link thene(b) = [e(a)];

— if a1, ..., a, are the premises aridis the conclusion of &-link thene(a;), ...,

e(ay) ande(b) are multisets and(b) = e(a1) + ... + e(ay);

if a is a premise of a cut link, and if its other premisé ithene(a) = e(b).

Observe that(a) is always an element of the web of the label of the edge

An experiment on a flat proof structure can be considered aviae of labels for
axiom links and-links which satisfies the constraiata) = e(b) on cut links, when
propagated by other links.

(3.e).1f R has only negative conclusions andeifis an experiment o thenr(e),
theresult of e, is the familya — e(a) indexed by conclusions aR. This notion of
result extends to any flat proof structuRé and to any experimert{ on R’ by setting
r(e’) = r(e) wheree is an experiment on a flat proof structuRedefined as follows. If
R’ has a positive conclusion we add belowiink. Then, for each conclusion of type a
flat-formula we add below a unafilink. The resulting proof structure i8 and there
is a unigue extension ef into an experiment o2 which ise.

(3.f). Experiments on proof-netsand their results are defined inductively nras fol-
lows. If the root ofr is the flat proof structuré? then an experiment, on 7 is an
experimente on R together with, for each proof-net, associated with &link v of
R, a multiset[e}rv, cel, e’,?;] (k, € IN) of experiments orr, which satisfies the fol-
lowing. If @ is the front conclusion and,... b, are the auxiliary conclusions of
and if, for eachi, the result ok’ is (z;,1,"",...,v/"") thene(b) = S5 v, ...,
e(by) = % v ande(a) = [21,. . ., xx,]. The result-(e,) of e, is the result ok.

Hence on a proof-net, an experiment consists of two cho{fea:copying choice
for !-boxes, inductively given by: taking one copy of the rootroéind, for each-link
of the root, choosing an arbitrary finite number of copieshef proof-net above, then
starting again for each of these proof-nets; (ii) a choicéabéls for axioms links in
each (copy of) flat proof structure which have been selectethgl the first choice.
Once propagated, these choices have to obey to the onlyraimsif equality of labels
on cut links.

Observe that the first choice (i) is just the choice of an eabjtthick subtree of’;
and that there is no constraint on (i) and (ii) when there isutdink.

(3.9). To summarize, in this paper, &xperiment on a cut-free proof-netr is given
by: a thick subtree of T’ ; together with, for each axiom link inintroducing an atom
X, the choice of an element of the web &f We call this last choice galuation of
axioms.



(3.h). The result of an experiment on a MELLpol proof-metvith only one conclusion
N is an element of the web @¥. Therelational interpretation of a proof-net = is the
set of results of experiments an for all possible experiments.

3.2 Cut free MELLpol proof-nets

In this section, we describe and simplify the structure of
cut free proof-nets. We start by introducing two simplifica- @

tions, there will be a third one.

(3.i). First, we work with multiplicative connectives up to neu—b\X,.l« \)f/
trality and associativity. In flat proof structures there tees + -
of tensor links andl-links with front conclusions of-links
above. We identify maximal such trees, caltedrees to links
(drawn with a triangle). The same for trees?®flinks and_L-links with ?-links above
(®3-trees).

Second, we only consider MELLpol proof-nets with only ongatéve conclusion.
If needed we can always transform a (cut free) proof-net soich a MELLpol proof-
net by adding well chosen links to the flat proof structurgstaot (the same way as
in 83.e).

Observe that, if the conclusions of a cut free proof-net ae@nn (before simplifi-
cation) then we can recover this proof-net from its simpdifiersion.

Let 7 be a (simplified) MELLpol cut
free proof-net. We detail the shape of the
flat proof structures containedin Let R
be a flat proof structure of. We will see
that there are two cases: one with exactly
one axiom-link (Fig. 6) and one without
axiom (Fig. 7).

Each flat proof structure occurring in
7 is either in al-box or at the root of
7. HenceR has conclusion edges labeled
bF1,...,bF} and exactly one negative con-
clusion edge ~ labeledG* (the only con-
clusion if R is at the root ofr). -

According to the correctness criterion
(83.b), R has only one-link L,. Since
this is the only link which has a positive
premise and a negative conclusion, all the
links with positive conclusions must bg Fig. 7.What is in the box?
aboveL, in R. Here are the two cases: (i)
either the premise df, is the (positive) conclusion of an axiom lidl, and there is no
other link with some positive conclusions Ry (ii) or the premise of_, is the conclu-
sion of ag-treet (possibly reduced to an edge or td-éink) with front conclusions of
I-links above and there is no other link Mintroducing a positive formula (we already
found the unique-link).

Fig. 6. Axiom’s case
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In the first case, the axiom also introduces a negative a&owhich cannot be the
premise of any link. SoR has no other link that, and Ly (in particular,R is a leaf
of 7).

Now the second case. The conclus@t is a MELLpol formulaN (if G+ was an
atomX then there will be an axiom introducing it iv). Above the edge—, labeled by
N, there is &-treetz with 7-links above. There is no othé&tink introducing negative
conclusions than the above mentioned. If there was onewbigd be ab formula
(because we already found tB&- conclusion) but flat formulae are only introduced by
b-links (there is only one[,) and!-links (another one than the above mentioned will
also introduce a positive conclusion). Since the premist®eg-link areb formulee they
have to be chosen among the conclusio.pbr of the!-links. The others conclusions
of these last links which are not premises’dinks are the conclusionsfy, . .. ,bFj
of R. So there is a pairwise connectier; of: the conclusion ofs and the auxiliary
conclusions of the-links with: the premises of the-links and the conclusions d®
different frome™—.

The third simplification we consider is the following. Obsethat thel-links oc-
curring in a flat proof structur& of a cut free proof-net are totally ordered by mean
of the ordering of premises of the uniqaetree of R. As a consequence, rather than
using S for matching!-boxes with!-links, we considef’. as an ordered tree where the
ordering of sons of a node is the same as the ordering of thénks of R(n). (This
cannot be done in a canonical way when there are cut links).

3.3 Game semantics

In polarized games, a MELLpol proof-net of conclusidnis interpreted as &nite
balanced total innocent stratedy the arenad, called further aMELLpol strategy .
In the sequel, we restrict ourselves to a negative type {ttension to positive types is
easy).
(3.j). A Player’s view (P-view for short) is a legal play such that ifs; <! s; ands; is
an Opponent’s move then < s; (the Opponent always points to the last move).
Traditionally a strategy is a set of legal plays satisfyinme properties (e.g. prefix-
closure,determinisiu. Composition of strategies is then definpdintwiseon legal
plays: two interacting legal plays are interleaved andhm riesulting sequence, the
part on which the plays have interacted is hidden. We do ruatllrall the definitions
of game semantics and polarized games. It is well known tila¢n a strategy is in-
nocent, all its legal plays are determined by its P-viewss BHows for an alternative
description of innocent strategies which only uses P-vietigh we next relate to the
traditional presentation (83.k and Prop. 5).

Definition 4. Afinite innocent strategys in a negative arena! is an even prefix-closed
set of P-views which is finite ardkterministic the longest common prefix of every two
elements of the set is of even length. We further congidas the prefix tree of its
P-views regarded, as a particular LJT;, <, f) (in which every branch is a P-view).

(3.k) Traditional presentation. The set of legal play$(¢) associated with a finite
innocent strategy on A is the smallest set such that: (i) the P-views)adre in P(¢);
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(ii) if there is a visible legal play - ab such thats € P(¢) andv™(s - ab) is a P-view
of ¢ thens - ab € P(¢). Observe thaP(¢) is an even-prefix closed set of visible even
length legal plays which is not, in general, finite.

(3.). When (I,<,«, f) is a LJT, we further consider the following relations: the
Player’s pointers—* = « N (I~ x I1); theOpponent’s pointers—— = «— N (I* x
I7); the Player's precedencect = <! n (I~ x IT); the Opponent's precedence
<~ =<!n (It x I7);and thePlayer’s order (<* U «~)*. The Player’s order oh

is still a tree because-* C <.

(3.m). A LJT is visible when its Player’s order contains the Player’s pointers.

(3.n). The negative desequentialization

D~((s, <)) of a visible LIT (or play) L2 3f

is the LIT(I;, (< U «)*,«). Each 21 227
branch of this tree is a P-view. Tew o+ ot
function v+ maps visible legal plays to 11‘, 11',
P-views: a legal play with last move N L7

a is mapped to the unique branch of th 1|
tree D~ (s) with leaf a. Thepositive de- €
sequentialization D+ is defined dually, (b) D~ (p)
by reversing the roles of Player and Op 19+

ponent, onco-visibleLJTs (the dual no-
tion of visible LJTs). We will only use
D™ on the image ofD~ where all LITs

I
117 117 217 227
\ / \/

are co-visible (because the Opponent al- 1" 2/+/2+ 3t
ways points to the last move). On LJTs —
the desequentializatiab factors through (c) D(p)

D~ and D™, moreoverD and D+ coin-
cide onthe image ab~—. So, for a visible Fig. 8. Desequentialization of a play
legal plays,

D(s) = D*(D~(s)) = D(D™(s)).

Figure 8(a) shows a legal playin the formulaV, (of Fig. 4) which is visible (but
not co-visible). If the Player’'s movkl 2 was set to point to the second occurrencélof
(from bottom to top) then the play would not be visible. Figg8(b) shows the negative
desequentialization gf and Figure 8(c) achieves the desequentialization.

(3.0).1fa LJT tis such that each Opponent’s move has exactly one son theamitsact
presentation is itself but where, in the treél;, <), each pair of successive nodes
a <t bis regarded as one node, b). An even thick subtreet of a finite innocent
strategye is a thick subtree o such that each Opponent’s move has exactly one son
(so,t is given by an arbitrary thick subtree of the compact present of ¢). The set of
even thick subtrees af is denotedETST(¢).

Proposition 5. Let ¢ be a finite innocent strategy. i is a legal play of¢ (ie s €
P(¢)) thenD~ (s) is an even thick subtree gf Conversely, if (together with a tree
morphismf) is an even thick subtree gfthen any total ordex, on I, which extends
<; and preserves the Player's precedence (ife. <7 =<;") uniquely defines a legal
play (I3, <, <, ft) which is an element aP(¢).



12

LO—®
=

0 e e’ e

(a) Strategy (b) Go-between (c) Proof-net

Fig. 9. Example

Proof by induction on the cardinal ef(resp.t).

(3.p). A finite innocent strategy in a negative arend is: total when for each Player’s
move a of ¢, the sons ofz in ¢ are all the sons of, in A; balancedwhen for each
Opponent’s move, if b is the son ofz thena andb are mapped to the same label by
a 4. A MELLpol strategy is a balanced total finite innocent st

3.4 Proof-nets and strategies

Let NV be a negative formula. A MELLpol strategyin IV, together withN, uniquely
defines a cut free MELLpol proof-net= W&l(@ as follows.

Figure 9 gives an example of the construction for the tixpdof Fig. 4).

The treeT; is the tree of the compact presentation (83.0p0$0 the Opponent’s
pointers (83.1) give the tree order ®f . This relation will also gives the correspondence
S between-boxes and-links (it is drawn with double lines in the figure). Totalibf
¢ (83.p) ensures that eveRink has an associateebox. Each pair of moveg—, n™)
associated with a node partially defines a flat proof structu®(n) as follows. If
an(n™) = an(n™) is an atomX, R(n) is a flat proof structure consisting of: one
axiom introducingX with ab-link n(b) connected to its conclusiok * (as in Fig.6).
Otherwiseay(n™) = ay(n™) = * (since¢ is balanced) and?(n) is a partial flat
proof structure, similar to the one of Fig. 7. The maximal-fofnula F'(n~) of N
(82.c) determines &-treen(%) with, for each of its premises, ... ., a,, a?-link W;
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of conclusiona;. The premises of thesglinks are yet unknown. The maximal sub-
formulaF(n™) of N defines a-treen(®) with: for each of its premisels, ..., b,, a
I-link with principal conclusiorb;; and a-link n(b) having the conclusion of the(®).
The auxiliary doors of thé-links and the permutatioa, are not yet defined. In the
partial proof-net we then obtain (Figure 9(b)), we stillmegent the Player’s pointer: if
n points ton, and if F(n,) occurs inF(ny) at placei then we draw an edge from
n1(b) to theith ?-link 1, abovena ().

Next, we slice the pointers to reconstruct the missing edfitise flat proof struc-
tures, by working inductively on,, from leaves to root. When(b) points to a?-link
W; aboven (%) we draw an edge from the conclusiorvdp) to W;. Otherwisen(b) is
a conclusion ofR,,. It is thenpassedas an auxiliary door to the associatelihk L of
the flat proof structure below: a conclusion edge is drawn from the actual source of
the pointer, and this source is changed ibtdt is passed again, until the source of the
pointer is in the same flat proof structure as its targétlink. We then draw an edge
from the source to the target of the pointer. At the end ofphixess we obtain.

Conversely, letr be a cut free proof-net of conclusidwh. We construct) = ¥y ()
as follows.

We define a labelind/,. of the edges of the flat proof structuresmoby moves of
N. Intuitively this labeling is just a way to identify the oatences of sub-formulae of
N to the places where they are created in the proofsn&he (unique) conclusion edge
of = is labeled by the empty word (the root &f). Going upward through a-link, a
b-link or through a-link and its associatebox do not change labels. If is a®-tree
or a?%-tree andw is the label of its conclusion then itspremises are labeled- 1, .. .,

w - k (in that order).

We uselM, to associate to each nodef 7 an ordered pair made of one Opponent’s
moven~ and one Player's move*. For a flat proof structure containing one axiom
(Fig. 6) this is respectively the move labeling the negatiwaclusion and the move
labeling the positive conclusion of the axiom. For a flat rstoucture without axiom
(Fig. 7) this is respectively the move labeling the condusif theZ-tree and the move
labeling the conclusion of the-tree.

The treeT, equipped with the labeling/,. will be the compact presentation of
¢. The pointing relation—, is not yet defined. We first set] <4 n, each time
ny <, ny (thatis, each timény, ny") <* (n;,ny ) inthe compact presentation of.
Each flat proof structur®,. (n) associated to a nodeof 7 contains a unique flat link.
We denoté(n) its conclusion edge. There exists a unique chaircl ... <l ny =n
in 7 such that

Br(n2)(...Br(ng)(b(n))...)

is the premise of &-link of n,. We setn] <4 n*. We then obtainp.

3.5 Experiments and strategies

The detailed correspondence between proof-net and seatggpws that a thick subtree

of a cut free proof-netr of N can be regarded as an even thick subtree of the corre-
sponding strategy = ¥ () (and conversely). But an experimentsinis just a thick
subtree of7, together with a valuation of axioms (83.g). We now define atibns
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of axioms directly in games, to obtain a notion of experin@mMELLpol strategies.

The correspondencgy then extends into a one to one correspondence between ex-
periments int and experiments i = ¥, (7) and that allows to show that the result

of a proof-net’'s experiment is the desequentializationhef ¢corresponding strategy’s
experiment.

(3.q) Valuation of axioms (2).If (¢, f) is an even thick subtree @f (equivalently, an
element ofP(¢), §3.k) then avaluation of axiomsin (¢, f) is the choice, for each pair
a < bsuch thatay(a) = ay(b) is an atomX, of an element of the web ofX.
The set of valuated thick subtrees®fs denotedVETST(¢) and the set of valuated
legal plays ofP(¢) is denotedV (P(¢)). Proposition 5 extends into a correspondence
between these two sets.

Even thick subtrees of a strategy inherit the labeling by escand pointers from
the strategy (82.e). We do the same for thick subtrees offjrets. If (¢, g) is a thick
subtree off’, then we define three labeling functiofs, S; and B; ont as follows.
For each node of ¢, R;(n) is a copy of the flat proof structu, (g(n)). If n <} n’
then S, (g(n))(g(n’)) is al-link L of R.(g(n)) which has a corresponding cogy.
in R¢(n). We setS;(n)(n’) = L.. The one to one correspondenBg(n’') between
conclusions of?,(n’) and conclusions ok, is then simply acopyof B, (g(n')).

Lemma 6. Let N be a negative MELLpol formula;y extends into a one to one cor-
respondence between the experiments @md the experiments aby (7). Moreover,
if ¢ is an experiment om then the valuated thick subtrde™ (¥ (e)) is the result ot.

The extension of?yy is straightforward, because the condition that the fumstio
Sr(n) are one to one in the definition of proof-nets (Def. 3) is natassary to makéy
work. But one needs to be careful for the slicing of Playeomfers when reconstruct-
ing a proof-net experiment If there are two pointera~ «—* nf, andn™ «* nJ
such thatn] andnj correspond to the same node in the strategyien, when go-
ing through the same partial flat proof structétethese pointers define iR the same
edgea (from a!-link to a?-link or a conclusion) rather than two edges. This identifica
tion corresponds to a sum of multisets in the latfel). There is a labeling of pointers
of ¥y (e) which coincides withe on sources of pointers. It is then easy to check that
DT (¥n(e)) is the result of.

As an immediate consequence of this last Lemma we have:

Theorem 7. If 7 is a MELLpol proof-net of negative conclusidf then the relational
interpretation ofr is the setD™ (VETST (¥ (7)) = D(V(P(¥n(7)))).

This result proves that the desequentialization (togewitr valuations) defines
a logical functor from polarized games to the relational elo8y using techniques
presented in [9]1D can be composed with a functor forgetting some results, taimk
logical functor from polarized games to coherence spacésloypercoherences.

The results presented here extend to the full fragment ooLlajth sliced proof-
nets [14]. The use of additives can be restricted to the outstflat proof-structure (the
root), by using the type isomorphisiftV & M) = |N ® !M and the distributivity laws
of linear logic (leaving unchanged the semantics). The wmlsk left is a generalization
of the present work from trees to forests.
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An extension to full linear logic (without polarity constng) is more problematic at
least because of the arbitrary complexity of cut-free flapfistructures.

Since the desequentializatidn provides good results for the game semantics of
MELLpol, we hope that it can be applied to others game semsnfdr instance for
languages with imperative features, in order to obtairicstaimantics of these syntaxes.

A corollary of Theorem 7 is that all the results of experingeate equitable. This
property, coming from alternation of moves in plays, su@lgws for narrowing the
relational model to equitable results. Other propertieglays, such as visibility, seem
harder to capture on the side of the relational model.

Another direction to look at is the faithfulness of the redatl model. Factoring the
interpretation through abstract Bohm trees by mean of thidkrees allows for a more
combinatoric approach of this long standing conjecture [6]

The author thanks the anonymous referees for their comnuenimproving the
readability of this paper.
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