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Abstract. We relate the dynamic semantics (games, dealing with interactions)
and the static semantics (dealing with results of interactions) of linear logic with
polarities, in the spirit of Timeless Games [BDER97].
We carefully analyze Laurent’s polarized proof-nets (which for the game seman-
tics is full and faithful [Lau03]) and we detail the precise correspondence between
cut free proof-nets and innocent strategies, in a frameworkrelated to Böhm trees.
We then introduce a notion of thick subtree that is used to define a desequential-
izing operation, forgetting time in games. This allows use to show a deep relation
between plays in games and Girard’s experiments on proof-nets. We then obtain
our main result: desequentializing the game interpretation of a polarized proof-
net yields its generic static interpretation.

Introduction

Denotational semantics interprets aprogram(a proof or aλ-term) as a structure repre-
senting all its possible interactions (via cut eliminationor via β-reduction) with others
programs. In static semantics only theresult of the interaction is represented. In dy-
namic semantics (games) an interaction is fully represented by a sequence (play) of
actions (moves) of the program (the Player) and the environment (the Opponent).

There are many references for game semantics. For an introduction, see [AM98].
In this paper, we use Hyland-Ong style polarized games [Lau04]. In such games, a
move can justify itself bypointing to a preceding move. Laurent recently proved that
polarized game semantics is full and faithful [Lau03], for the proof-nets’syntax of
linear logic with polarities, LLpol. Proof-nets have been introduced together with linear
logic [Gir87] as a more parallel syntax than sequent calculus. The static interpretation
of a proof-net is the set ofresults of experimentson this proof-net.

The comparison between static and dynamic semantics is strongly motivated by
Ehrhard’s result ([Ehr96]) stating that the extensional collapse of sequential algorithms
(a game model) is the hypercoherences semantics (a static semantics). In [Mel03], by
introducing a suitable game semantics (extensional games), P.-A. Mellies gives a new
proof of this result which better details the extensional content of games.

The relational modelis the genericstatic semantics of linear logic, in the sense
that the others are generally derived from this one by introducing new ingredients (like
various coherence relations, see [Bou03]). In that very simple semantics, formulæ are
sets and proofs are relations.
? This work was partly supported by the CNR-CNRSInteraction and Complexityproject.
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A naiveapproach to the comparison is to consider an operationD which maps a
play (an interaction) to an element in a set ofresults, as in Figure 1. The difficulties
are then: (i) to build a static semantics with sets ofresults(a natural candidate is the
relational model); (ii) to turnD into alogical map,i.e.such that the diagram commutes
for proofs.

This approach is successfully used in [BDER97],
Syntax

games
play

static semantics
result

D

Fig. 1.ProjectionD

by introducing an ad hoc static semantics, the(bi)-
polarized pointed relational model, and in [Bou04],
by introducing an ad hoc game semantics,bordered
gameswhere plays explicitly carries results of inter-
actions.

In this paper, our aim is to clarify the relation between syntax, static and dynamic
semantics, without using ad hoc interpretations. We introduce a desequentializationD
of justified plays, which for the source is Laurent’s polarized games, and the target is
the relational model. The desequentialization maps a play to the tree of its justification
pointers.

By seeing the relational model (the target) as a game semantics without time (through
the time forgetful projectionD), we also pursue the goal of introducing static semantics
to the operationally rich point of view on computation of game semantics.

In polarized games, proofs are interpreted as finiteinnocent strategies. Such strate-
gies can be presented as finitetrees of Player’s views. Trees of P-views are particular
instances ofabstract Böhm trees([Cur98,CH98]). When it comes from the interpreta-
tion of a proof, a tree of P-views can be thought of as an abstract presentation of the
Böhm tree of a simply typedλ-term. (Pointers represent variables binding).

Since the polarized game semantics is full and faithful, trees of P-views are in a
bijective correspondence with cut free polarized proof-nets of the same type. By an-
alyzing the shape of cut free proof-nets, we detail this correspondenceΨ in a very
direct way (comparatively to [Lau03]). To do so, we restrictourselves to the additive
free fragment, MELLpol, of LLpol. This minimize the complexity of the definition of
proof-nets, at a low cost, since additives can (almost) be encoded in MELLpol.

Here is a sketch of the correspondenceΨ . Obviously, the Reader unfamiliar with
proof-nets and games will find the definitions in the body of the paper.

A tree of P-viewsφ is a finite treetφ, together with two more datum: a namingfφ

of nodes by moves and a relation←φ specifying justification pointers between nodes.
A MELLpol proof-netπ is also a finite treeTπ (representing the nesting of!-boxes) but
together with: a labelingRπ of nodes byflat proof structures(which are finite oriented
graphs with pending edges) and a structure(Sπ, Bπ) relating flat proof structures to
each others (this data can be considered as the frontiers of the !-boxes). Whenπ is in
normal form (cut free), the correspondenceΨ establishes a tree isomorphism between
Tπ andtφ. Moreover the flat proof structures ofπ have a very particular shape: each
flat proof structure consists of onecombinedpositive connective and onecombined
negative connective together with edges connecting them orgoing through the frontiers
of !-boxes. ThroughΨ , moves oftφ correspond to thesecombinedconnectives and
pointers are just another way to draw the connecting edges.
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Fig. 2.Desequentialization

The core ingredient of the paper is the notion ofthick subtree, a generalization of
the usual notion of rooted subtree, which we present in Section 1, devoted to trees. We
use thick subtrees both at the term level and at the type level.

Type level(Section 2). A MELLpol formulaA can be thought as a tree (thearena
in games). The desequentializationD(p) of a playp in A is a particular thick subtree of
A. And there is a (bijective) encoding of (classes up to isomorphism of) thick subtrees
of A into the set of results of typeA.

Term level(Section 3). Thick subtrees are used at the term level both torepresent
experiments in proof-nets and to express theintrinsic dynamicof plays of a strategy.

The desequentializationD factors into a negative partD− followed by a positive
partD+ (Fig.2).

If p is a play in an innocent strategyφ thenD−(p) is an even thick subtrees of tφ.
Conversely, any even thick subtreet of tφ can be lifted into many plays inφ. This is just
a matter of extending the tree order ofs into a well-shaped total order. Intuitively, the
tree order ofs corresponds to the internal dynamic of the program (positive/Player) that
one will find in any interaction between this program and an environment. The new part
of the order is then provided by the environment (negative/Opponent) during a possible
interaction. The thick subtrees together withthe total order is called a multiplexed
position in recent Curien’s terminology (unpublished).

An experimente in a proof-netπ is just an even thick subtrees of Tπ, together
with an arbitraryvaluationv of axioms. By extending the correspondenceΨ between
proof-nets and trees of P-views to their thick subtrees, we show that the positive dese-
quentializationD+ of s (together withv) is the result of the experimente. This proves
that the desequentialization is a functor which maps a finiteinnocent strategy (a set of
plays) to the static interpretation of the corresponding proof-net.

Figure 2 sketches the full picture we then obtain.

The notion of valuation (not represented in the figure) may interfere with the un-
derstanding of the full picture. In polarized games, an atomis represented by a single
element (a move labeled by the name of the atom) while, in the relational model, it is
a set of results, aweb. Valuations of atoms fills this gap by associating webs to moves
coming from atoms. For a first reading, one can restrict to thecase of MELLpol without
atoms, where valuations are useless.
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1 Trees

(1.a) Trees.A finite tree t is a partial order(It,≤t), whereIt is a finite set, theindexing
set, having a least element, theroot of the tree, and such that ifa ≤t c andb ≤t c then
a ≤t b or b ≤t a. In the sequel, trees will all be finite.The cardinality]t of a tree
t = (It,≤t) is the cardinality ofIt. Elements of a tree arenodesand maximal elements
areleaves. The associated precedence relation is denoted by<1

t (soa <1
t b means that

a <t b anda ≤t c ≤t b =⇒ c = a or c = b). The tree!sons, son(a), of a node
a are the nodesb such thata <1

t b. If a is a node oft thent�a is the tree defined on
{b ∈ It | a ≤ b} by≤t. A labeling in a tree is a function fromIt to a set oflabels. An
ordered tree is a tree together with, for each nodea, a total order<a on the sons ofa.

(1.b) Thick subtrees.A tree morphism f : t → t′ is a functionf : It → It′ which
maps the root oft to the root oft′ and such that ifa <1

t b thenf(a) <1
t′ f(b). An

ordered tree morphism is a tree morphism preserving the order on sons.
A thick subtree of a treet is a trees to-

(a, 0)

(b, 0)

(d, 0)

(b, 1)

(c, 0) (d, 1) (d, 2)

π1
−→

a

b

c d

e

Fig. 3.An example of thick subtree

gether with a tree morphismf : s → t. The
terminology is reminiscent from the fact that
different nodes ofs can be mapped to the same
node oft. Typically, in Figure 3, the l.h.s. tree
together with the first projection function, is a

thick subtree of the r.h.s. tree. Observe that whenf is injective,s is just a non empty
rooted subtree oft (up to an explicit renaming of nodes). Athick subtree morphism
between two thick subtrees(s, f) and(s′, f ′) of a (same) ordered treet is a tree mor-
phism g : s → s′ such thatf ′ = f ◦ g. If there exists an injective thick subtree
morphismg : (s, f)→ (s′, f ′) then(s, f) is less than(s′, f ′). This defines an order on
thick subtrees.

(1.c) Re-indexing.In this paper, indexing sets are irrelevant:we work on trees, se-
quences, ordered trees and thick subtrees up to isomorphism(for the respective notions
of morphism). A concrete representation of ordered treesup to re-indexingis given by
the grammar:t := (t1, . . . , tn) (an ordered tree is a tuple of ordered trees.) We also use
the following convention forcanonicallylocalize an ordered tree. The indexing setIt

is a set of words of integers. The root oft is the empty wordε and ifw is a node having
n sons, then these sons arew · 1, . . . , w · n, in this order. The tree order onIt is then
the prefix order. More generally, a set of words defines a tree (by prefix closure). We
denotew · a the concatenation of a wordw with an elementa.

2 Types

Formulæ of multiplicative exponential linear logic with polarities (MELLpol) are given
by:

N := ?X⊥ | ⊥ | N
�

N | ?P (negative formulæ)

P := !X | 1 | P ⊗ P | !N (positive formulæ)
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with the usual De Morgan laws for the orthogonal(−)⊥ and whereX is any element
of a given set of atomsV . Here, as in [Lau03], atoms (X , X⊥) are not formulæ. This
restriction is necessary for obtaining the faithfulness ofthe game semantics. For the
same reason, MELLpol proof-nets (see Section 3) require theintroduction of aflat ([)
modality which does not belong to MELLpol and which can be thought of as awhy not
(?) modality, in semantics.

(2.a).The relational interpretation of a formulaA is a countable set, denoted|A| and
called theweb of A. The web ofA⊥ is always the same as the web ofA. The web
of 1 (and the web of⊥) is the singleton set{∗}, (this set is intended to betheneutral
element of the Cartesian product of sets, so∗ shall be thought of as a notation for the
empty tuple). The web ofA ⊗ B (or of A

�
B) is |A| × |B|. The web of!A (or of

?A) is the set of finite multisets of elements of|A|. For each atomX ∈ V , an arbitrary
enumerable set is chosen as web (both forX and its orthogonal). For convenience, we
also set|[A| = |?A|.

To avoid some bureaucratic aspects, we will work on MELLpol up to associativity
and neutrality of multiplicatives. In the relational model, this amounts to working up to
associativity of the Cartesian product and neutrality of{∗}.

2.1 Arenas and the desequentialization

An arena A is a labeled ordered finite forest together with a polarity: positive or neg-
ative. For the game semantics of MELLpol, we restrict ourselves to finite trees. The
labeling function is denotedαA. The labels of leaves are elements ofV ∪ {∗} and the
labels of others nodes are all equal to∗.

The polarity of the arena is extended to moves by choosing thepolarity of the arena
for the root and by saying that two successive nodes have different polarities. This
corresponds to the usual Player/Opponent polarity as follows: positive corresponds to
Player and negative to Opponent.

Basically, in MELLpol, the arena associated with a formulaA is the syntactic tree of
this formula, up to associativity and neutrality of multiplicatives and where exponentials
shift polarities.

(2.b) Arena of a formula. Let A be a formula. The arena

ε

1+

11−

111+ 112+(X)

2+

21−(X) 22−

3+

Fig. 4.The arena ofN0

of A is defined as follows. The polarity of the arena as-
sociated toA is the polarity of the formula. The tree of
A and ofA⊥ are equal. The tree of1 or of an atomX
is the tree reduced to one node:(). If t is the tree ofN
then(t) is the tree of!N . If (t1, . . . , tp) is the tree ofP
and(t′1, . . . , t

′
q) is the tree ofP ′ then the tree ofP ⊗ P ′

is (t1, . . . , tp, t
′
1, . . . , t

′
q). We adopt the canonical local-

ization of ordered trees on arenas. The labels are chosen such that the label of a node
coming from an atomX or X⊥ is X and the labels of the others nodes are∗. Con-
versely, every arena is the arena of a unique formula (up to re-indexing of labeled
ordered trees). We further identify arenas and formulæ. Figure 4 shows the arena of
N0 = ?!(?1

�
?X⊥)

�
?(!X ⊗ !⊥)

�
?1 with the relevant part of the labeling.
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(2.c). In the arena of a formulaA, each sub-formula ofA corresponds to a move. Two
sub-formulæ can correspond to a same movea, but, for each move, their is amaximal
sub-formula F (a) of A corresponding toa. For instance, the first occurrence of?1 in
N0 corresponds to the move11, butF (11) is ?1

�
?X⊥.

(2.d). A legal justified tree (LJT, for short) onA is a finite tree(I,≤) together with a
labeling functionf : I → IA and apointing relation← such that: (i)(I,←∗, f) is a
thick subtree ofA; (ii) ≤ extends the order←∗ (i.e.←∗ ⊆ ≤); and (iii) <1 alternates
between positives and negatives. We consider that polarities extend to elements ofI
by saying that the polarity ofa ∈ I is the polarity off(a). So the setI is the disjoint
union of a set of negative nodesI− and a set of positive nodesI+. Observe that (ii)
implies that← alternates betweenI− andI+ (as<1). The notion of LJT encompasses
the game notion oflegal play. A legal play is a LJT where(I ≤) is a total order.

(2.e).Observe that a LJTt has two tree structures(It,≤t) and(It,←
∗
t ). We implicitly

generalize some notions on trees (e.g. thick subtrees and prefixes) to LJT by considering
that(It,≤t) is the treeof the LJTt. If t is a LJT, a thick subtree(It′ ,≤t′ , g) of (It,≤t)
inherits a LJT structure(←t′ , ft′) from t by setting:ft′ = ft ◦ g and if a ≤t′ b and
g(a)←t g(b) thena←t′ b.

Definition 1. ThedesequentializationD(t) of a LJTt = (I,≤,←, f) is just the thick
subtree(I,←∗), seen up to re-indexing (§1.c).

(2.f). A thick subtree(t, f) is equitablewhent has as much positive nodes as negative
nodes. Observe that the thick subtree associated with an even-length, legal play is equi-
table. Conversely if a thick subtree(t, f) of an arenaA is equitable then there exists a
total order extendingt into an even length legal play. (Proof by cases on the number of
leaves and strict nodes oft of each polarity).

(2.g) Valuation (atoms).Let A be a formula. Let(t, f) be a thick subtree ofA. A
valuation v of (t, f) is a partial labeling of nodes oft given by the choice of an element
x of the web ofX , for each nodea of t such thatαA(f(a)) = X (in that casef(a) is
a leaf ofA anda is a leaf oft). Whenf(a) is a leaf ofA andαA(f(a)) = ∗ we set
v(a) = ∗. So, each nodea of t such thatf(a) is a leaf ofA and no other is labeled.

A result of typeA can be seen as a concrete representation of an equivalence class
of valuated thick subtrees ofA for the equivalence by re-indexing (§1.c). This repre-
sentation commutes to the orthogonal. An elementx of |X | (resp. the element∗ of |1|),
is simply the unique thick subtree of the tree(), together with the valuation mapping
its unique node tox (resp.∗). Let a = ([a1

1, . . . , a
1
n1

], . . . , [ak
1 , . . . , a

k
nk

]) be an element
of |P | whereP is !N1 ⊗ . . . ⊗ !Nk (Ni can be an atom). For each1 ≤ i ≤ k and for
each1 ≤ j ≤ ni, ai

j is an element of the web ofNi, soai
j represents a valuated thick

subtree(tji , f
j
i , vj

i ) of Ni. The valuated thick subtree represented bya is then the tree
(t11, . . . , t

k
nk

) (seenunordered) together with: the functionf mapping its root to the root

of the arena ofP and equal to
∑

f j
i on the other nodes; and the valuation

∑
vj

i .

Proposition 2. LetA be a formula. The setVTST(A) of valuated thick subtrees ofA
(up to re-indexing) is equal to the web ofA.

Direct, by induction onA. So, the desequentialization of a legal play onA together
with a valuation is an element of the web ofA.
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3 Terms (proof-nets)

(3.a).A flat proof structure

⊗

P ⊗Q

P Q

1

1

�

N
�

M

N M

⊥
⊥

?
?F

[F [F

[
[F

F

!
!G⊥ [F1 [Fn

ax.

X⊥ ⊥X cut

F⊥ ⊥F

Fig. 5. Links of flat proof structures

R is a finite directed graph,
built using links of Figure 5,
with at least one pending out-
going edges, called the con-
clusion edges. A label of an
edge is either a formula, pos-
itive (P , Q) or negative (N ,
M ) or an atom (X) or its or-
thogonal (X⊥), or aflat for-
mula[F , whereF (or G) is either a positive formula or the orthogonalX⊥ of an atom
(soF⊥ or G⊥ is either a negative formula or an atomX). When connecting two links
by an edge, the two labels of the edge must match.

Polarities of MELLpol formulæ extend to labels as follows. AtomsX are negative,
their orthogonal are positive and flat formulæ are negative.

In a link, an outgoing edge is aconclusionand an incoming edge is apremise. In a!-
link, the edge labeled!G⊥ is thefront conclusionand the others edges are theauxiliary
conclusions. There is one!-link (resp.?-link) for each natural number of auxiliary con-
clusions (resp. premises). For?-links and!-link the ordering of incoming and outgoing
edges is irrelevant (to remind it we draw them with a double line).

Observe thatR is acyclic, because for each link, the label of each conclusion is
strictly bigger than the label of each premise.

(3.b) Correctness criterion.Given a flat proof structureR, we define a new directed
graph, , . A flat proof structureR is correct if: (i) the graph obtained (starting fromR)
by inversion of every edge with a positive label is acyclic; and (ii) eitherR contains no
flat link ([) and has exactly one positive conclusion, orR contains exactly one flat link
and has only negative conclusions.

(3.c).A !-box (RL, BL) for a !-link L is a correct flat proof structureRL together with a
one to one correspondenceBL between the conclusion edges ofRL and the conclusions
of L such that: the conclusion labeled!G⊥ of L (its front conclusion) is the image of a
conclusion edge ofR labeled byG⊥; and the other edges’ labels are preserved.
Definition 3. A proof-netπ is a finite treeT and three labeling functionsR, S, B of
nodes ofT such that:

– for each noden of T , R(n) is a correct flat proof structure andS(n) is a one to
one correspondence between the sons ofn and the!-links ofR(n);

– if n′ is a son ofn in T then(R(n′), B(n′)) is a !-box for the!-link S(n)(n′).

We do not make any requirement on the labelf(r) of the rootr of π: this label is
just here to ease the writing of the definition and it can be safely forgotten.

Observe that, ifn is a node of a proof-netπ = (T, R, S, B) and ifTn is the maximal
subtreeTn of t with rootn, thenπn = (Tn, R|Tn

, S|Tn
, B|Tn

) is a proof-net.
The conclusions of a proof-net are the conclusions of its root’s flat proof structure.

A MELLpol proof-net is a proof-net where conclusions are not atoms or flat formulæ.
We do not describe the cut elimination procedure on proof-nets.
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3.1 Relational semantics

(3.d).An experimenton a flat proof structureR is a labeling functione on edges ofR
such that:

– if a is a conclusion of an axiom link introducing an atomX , and if its other con-
clusion isb thene(a) = e(b) ande(a) ∈ |X |;

– if a is the front conclusion of a!-link andb1, . . . , bn are the auxiliary conclusions,
labeled respectively by!N , [F1, . . . ,[Fn then for eachi, e(bi) is a multiset of points
of |Fi| ande(a) is a multiset of points of|N |;

– if a is the conclusion of a1-link or of a⊥-link thene(a) = ∗;
– if a1 anda2 are the first and the second premises anda is the conclusion of a⊗-link

or of a
�

-link thene(a) = (e(a1), e(a2));
– if a is the premise andb is the conclusion of a[-link thene(b) = [e(a)];
– if a1, . . . , an are the premises andb is the conclusion of a?-link thene(a1), . . . ,

e(an) ande(b) are multisets ande(b) = e(a1) + . . . + e(an);
– if a is a premise of a cut link, and if its other premise isb thene(a) = e(b).

Observe thate(a) is always an element of the web of the label of the edgea.
An experiment on a flat proof structure can be considered as a choice of labels for

axiom links and!-links which satisfies the constrainte(a) = e(b) on cut links, when
propagated by other links.

(3.e). If R has only negative conclusions and ife is an experiment onR then r(e),
the result of e, is the familya 7→ e(a) indexed by conclusions ofR. This notion of
result extends to any flat proof structureR′ and to any experimente′ on R′ by setting
r(e′) = r(e) wheree is an experiment on a flat proof structureR defined as follows. If
R′ has a positive conclusion we add below a[-link. Then, for each conclusion of type a
flat-formula we add below a unary?-link. The resulting proof structure isR and there
is a unique extension ofe′ into an experiment ofR which ise.

(3.f). Experiments on proof-netsand their results are defined inductively onπ as fol-
lows. If the root ofπ is the flat proof structureR then an experimenteπ on π is an
experimente on R together with, for each proof-netπv associated with a!-link v of
R, a multiset[e1

πv
, . . . , ekv

πv
] (kv ∈ IN) of experiments onπv which satisfies the fol-

lowing. If a is the front conclusion andb1,. . . ,bn are the auxiliary conclusions ofv
and if, for eachi, the result ofei

πv
is (xi, ν

1,v
i , . . . , νn,v

i ) thene(b1) =
∑kv

i=1
ν1,v

i , . . . ,

e(bn) =
∑kv

i=1
νn,v

i ande(a) = [x1, . . . , xkv
]. The resultr(eπ) of eπ is the result ofe.

Hence on a proof-net, an experiment consists of two choices:(i) a copying choice
for !-boxes, inductively given by: taking one copy of the root ofπ and, for each!-link
of the root, choosing an arbitrary finite number of copies of the proof-net above, then
starting again for each of these proof-nets; (ii) a choice oflabels for axioms links in
each (copy of) flat proof structure which have been selected during the first choice.
Once propagated, this choice have to obey to the only constraint of equality of labels
on cut links.

Observe that the first choice (i) is just the choice of an arbitrary thick subtree ofTπ

and that there is no constraint on (i) and (ii) when there is nocut link.
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(3.g).To summarize, in this paper, anexperiment on a cut-free proof-netπ is regarded
as given by: a thick subtrees of Tπ; together with, for each axiom link ins introduc-
ing an atomX , the choice of an element of the web ofX . We call this last choice a
valuation of axioms.

(3.h).The result of an experiment on a MELLpol proof-netπ with only one conclusion
N is an element of the web ofN . Therelational interpretation of a proof-net π is the
set of results of experiments onπ, for all possible experiments.

3.2 Cut free MELLpol proof-nets

In this section, we describe and sim-

+







[

[P

P

⊗
!!G⊥

1

[F 1
1 [F 1

k1

!!G⊥
p

[F p
1 [F p

kp

σR

−







�

N

?

?F ′
1

[F ′
1 [F ′

1

?

?F ′
q

[F ′
q [F ′

q

[F1 [Fk

Fig. 6.What is in the box?

plify the structure of cut free proof-nets.
We start by introducing two simplifica-
tions, there will be a third one.

(3.i). First, we work with multiplicative
connective up to neutrality and associa-
tivity. In flat proof structures there are trees
of tensor links and1-links with front con-
clusions of!-links above. We identify max-
imal such trees, called⊗-trees, to links
(drawn with a triangle). The same for trees
of
�

-links and⊥-links with?-links above.
We then speak about

�
-trees.

Second, we only consider MELLpol
proof-nets with only one negative conclu-
sion. If needed we can always transform a
(cut free) proof-net into such a MELLpol
proof-net by adding well chosen links to
the flat proof structure at its root (the same
way as in §3.e).

Observe that, if the conclusions of a cut free proof-net are known (before simplifi-
cation) then we can recover this proof-net from its simplified version.

Let π be a (simplified) MELLpol cut free proof-net. We detail the shape of the flat
proof structures contained inπ. Let R be a flat proof structure ofπ. There are cases:
one with exactly one axiom-link (Fig. 7) and one without axiom (Fig. 6).

Each flat proof structure occurring inπ is either in a!-box or at the root ofπ. Hence
R has conclusion edges labeled[F1, . . . , [Fk and exactly one negative conclusion edge
e− labeledG⊥ (the only conclusion ifR is at the root ofπ).

According to the correctness criterion (§3.b),R has only one[-link L[. Since this is
the only link which has a positive premise and a negative conclusion, all the links with
positive conclusions must be aboveL[ in R. There are two cases: (i) either the premise
of L[ is the (positive) conclusion of an axiom linkLax. and there is no other link with
some positive conclusions inR; (ii) or the premise ofL[ is the conclusion of a⊗-tree
t⊗ (possibly reduced to an edge or to a1-link) with front conclusions of!-links above
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and there is no other link inR introducing a positive formula (we already found the
unique[-link).

In the first case, the axiom also introduces a negative atom
ax.

[

[X⊥
︸︷︷︸

+

X
︸︷︷︸

−

Fig. 7.Axiom’s case

X which cannot be the premise of any link. So,R has no other
link thanL[ andLax. (in particular,R is a leaf ofπ).

Now the second case. The conclusionG⊥ is a MELLpol
formulaN (if G⊥ was a atomX then there will be an axiom
introducing it inR). Above the edgee−, labeled byN , there
is a

�
-treet� with ?-links above. There is no other!-link in-

troducing negative conclusions than the above mentioned. If there was one, this must
be a[ formula (because we already found theG⊥ conclusion) but flat formulæ are only
introduced by[-links (there is only one,L[) and !-links (another one than the above
mentioned will also introduce a positive conclusion). Since the premises of the?-link
are[ formulæ they have to be chosen among the conclusion ofL[ or of the!-links. The
others conclusions of these last links which are not premises of ?-links are the conclu-
sions[F1, . . . , [Fk of R. So there is a pairwise connectionσR of: the conclusion oft⊗
and the auxiliary conclusions of the!-links with: the premises of the?-links and the
conclusions ofR different frome−.

The third simplification we consider is the following. Observe that the!-links oc-
curring in a flat proof structureR of a cut free proof-netπ are totally ordered by mean
of the ordering of premises of the unique⊗-tree ofR. As a consequence, rather than
usingS for matching!-boxes with!-links, we considerTπ as an ordered tree where the
ordering of sons of a noden is the same as the ordering of the!-links of R(n). (This
cannot be done in a canonical way when there are cut links).

3.3 Game semantics

In polarized games, a MELLpol proof-net of conclusionA is interpreted as afinite
balanced total innocent strategyin the arenaA, called further aMELLpol strategy .
In the sequel, we restrict ourselves to a negative type (the extension to positive types is
easy).

(3.j). A Player’s view (P-view for short) is a legal plays such that ifsi <1 sj andsj is
an Opponent’s move thensi ← sj (the Opponent always points to the last move).

Traditionally a strategy is a set of legal plays satisfying some properties (e.g. prefix-
closure,determinism). Composition of strategies is then definedpointwiseon legal
plays: two interacting legal plays are interleaved and, in the resulting sequence, the
part on which the plays have interacted is hidden. We do not recall all the definitions
of game semantics and polarized games. It is well known that,when a strategy is in-
nocent, all its legal plays are determined by its P-views. This allows for an alternative
description of innocent strategies which only uses P-viewswhich we next relate to the
traditional presentation (§3.k and Prop. 5).

Definition 4. A finite innocent strategyφ in a negative arenaA is an even prefix-closed
set of P-views which is finite anddeterministic: the longest common prefix of every two
elements of the set is of even length. We further considerφ as the prefix tree of its
P-views regarded, up to re-indexing, as a particular LJT(tφ,←φ, f) (in which every
branch is a P-view).
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(3.k) Traditional presentation. The set of legal playsP (φ) associated with a finite
innocent strategyφ onA is the smallest set such that: (i) the P-views ofφ are inP (φ);
(ii) if there is a visible legal plays · ab such thats ∈ P (φ) andv+(s · ab) is a P-view
of φ thens · ab ∈ P (φ). Observe thatP (φ) is an even-prefix closed set of visible even
length legal plays which is not, in general, finite.

(3.l). When(I,≤,←, f) is a LJT, we further consider the following rela-

ε−
1+

11−
2+

11−
2+

21−
112+

22−
3+

Fig. 8.p

tions: thePlayer’s pointers←+ =←∩(I−×I+); theOpponent’s pointers
←− =← ∩ (I+ × I−); thePlayer’s precedence<+ = <1 ∩ (I− × I+);
theOpponent’s precedence<− = <1∩(I+×I−); and thePlayer’s order:
(<+ ∪←−)∗. The Player’s order onI is still a tree because←∗ ⊆ ≤.

(3.m).A LJT is visible when its Player’s order contains the Player’s point-
ers.

(3.n). The negative desequentializationD−((s,←s)) of a visible legal
play (more generally, of a visible LJT) is the LJT(Is, (<

+ ∪←−
s )∗,←s).

Each branch of this tree is a P-view. Theview function v+ maps visible
legal plays to P-views: a legal plays with last movea is mapped to the
unique branch of the treeD−(s) with leaf a. Thepositive desequential-
ization D+ is defined dually, by reversing the roles of Player and Oppo-
nent, onco-visibleLJTs (the dual notion of visible LJTs). We will only use
D+ on the image ofD− where all LJTs are co-visible (because the Opponent always
points to the last move). On LJTs the desequentializationD factors throughD− and
D+, moreoverD andD+ coincide on the image ofD−. So, for a visible legal plays,

D(s) = D+(D−(s)) = D(D−(s)).

Figure 8 shows a legal playp in the formulaN0 (of Fig. 4) which

ε−
1+

11−
2+

21−
112+

22−
3+

11−
2+

Fig. 9.D−(p)

is visible (but not co-visible). If the Player’s move112 was set to point
to the second occurrence of11 (from bottom to top) then the play will
not be visible. Figure 9 shows the negative desequentialization of p
(the Opponent’s pointers, trivial, are omitted).

(3.o).If a LJT t is such that each Opponent’s move has exactly one son
then itscompact presentationis itself but where, in the tree(It,≤t),
each pair of successive nodesa <+ b is regarded as one node(a, b).
An even thick subtreet of a finite innocent strategyφ is a thick sub-
tree ofφ such that each Opponent’s move has exactly one son (so,t is given by an
arbitrary thick subtree of the compact presentation ofφ). The set of even thick subtrees
of φ is denotedETST(φ).

Proposition 5. Let φ be a finite innocent strategy. Ifs is a legal play ofφ (ie s ∈
P (φ)) thenD−(s) is an even thick subtree ofφ. Conversely, ift (together with a tree
morphismf ) is an even thick subtree ofφ then any total order≤s on It which extends
≤t and preserves the Player’s precedence oft (i.e.<+

s =<+
t ) uniquely defines a legal

play (It,≤s,←t, ft) which is an element ofP (φ).

Proof by induction on the cardinal ofs (resp.t).
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ε
−

1+

11−

2+

21−

112+

22−

3+

(a) Strategy

ax.

[

[112 21 22

⊥

[3

[

1

11

�
? ?

[2

[

⊗

! !

[1

[

!

ε

�
? ? ?

(b) Go-between

ax.

[

[X
⊥

X ⊥

⊥

[1

[

1

?1
�

?X⊥

�
? ?

[(!X ⊗ !⊥)

[

⊗

! !

[1

N0

�
?

[

!

? ?

(c) Proof-net

Fig. 10.Example

(3.p).A finite innocent strategyφ in a negative arenaA is: total when for each Player’s
movea of φ, the sons ofa in φ are all the sons ofa in A; balancedwhen for each
Opponent’s movea, if b is the son ofa thena andb are mapped to the same label by
αA. A MELLpol strategy is a balanced total finite innocent strategy.

3.4 MELLpol proof-nets and strategies

Let N be a negative formula. A MELLpol strategyφ in N , together withN , uniquely
defines a cut free MELLpol proof-netπ = Ψ−1

N (φ) as follows.
Figure 10 gives an example of the construction for the typeN0 (of Fig. 4).
The treeTπ is the tree of the compact presentation (§3.o) ofφ, so the Opponent’s

pointers (§3.l) give the tree order ofTπ. This relation will also gives the correspondence
Sπ between!-boxes and!-links (it is drawn with double lines in the figure). Totalityof
φ (§3.p) ensures that every!-link has an associated!-box. Each pair of moves(n−, n+)
associated with a noden partially defines a flat proof structureR(n) as follows. If
αN (n−) = αN (n+) is an atomX , R(n) is a flat proof structure consisting of: one
axiom introducingX with a [-link n([) connected to its conclusionX⊥ (as in Fig.7).
OtherwiseαN (n−) = αN (n+) = ∗ (sinceφ is balanced) andR(n) is a partial flat
proof structure, similar to the one of Fig. 6. The maximal sub-formulaF (n−) of N
(§2.c) determines a

�
-treen(

�
) with, for each of its premisesa1, . . . , aq, a?-link Wi

of conclusionai. The premises of these?-links are yet unknown. The maximal sub-
formulaF (n+) of N defines a⊗-treen(⊗) with: for each of its premisesb1, . . . , bp, a
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!-link with principal conclusionbi; and a[-link n([) having the conclusion of then(⊗).
The auxiliary doors of the!-links and the permutationσRn

are not yet defined. In the
partial proof-net we then obtain (Figure 10(b)), we still represent the Player’s pointer:
if n+

1 points ton−
2 and ifF (n1) occurs inF (n2) at placei then we draw an edge from

n1([) to theith ?-link Wi aboven2(
�

).
Next, we slice the pointers to reconstruct the missing edgesof the flat proof struc-

tures, by working inductively ontφ, from leaves to root. Whenn([) points to a?-link
Wi aboven(

�
) we draw an edge from the conclusion ofn([) to Wi. Otherwisen([) is

a conclusion ofRn. It is thenpassedas an auxiliary door to the associated!-link L of
the flat proof structure belown: a conclusion edge is drawn from the actual source of
the pointer, and this source is changed intoL. It is passed again, until the source of the
pointer is in the same flat proof structure as its target, a?-link. We then draw an edge
from the source to the target of the pointer. At the end of thisprocess we obtainπ.

Conversely, letπbe a cut free proof-net of conclusionN . We constructφ = ΨN (π)
as follows.

We define a labelingMπ of the edges of the flat proof structures ofπ by moves of
N . Intuitively this labeling is just a way to identify the occurrences of sub-formulæ of
N to the places where they are created in the proof-netπ. The (unique) conclusion edge
of π is labeled by the empty word (the root ofN ). Going upward through a?-link, a
[-link or through a!-link and its associated!-box do not change labels. IfL is a⊗-tree
or a

�
-tree andw is the label of its conclusion then itsk premises are labeledw · 1, . . . ,

w · k (in that order).
We useMπ to associate to each noden of π an ordered pair made of one Opponent’s

moven− and one Player’s moven+. For a flat proof structure containing one axiom
(Fig. 7) this is respectively the move labeling the negativeconclusion and the move
labeling the positive conclusion of the axiom. For a flat proof structure without axiom
(Fig. 6) this is respectively the move labeling the conclusion of the

�
-tree and the move

labeling the conclusion of the⊗-tree.
The treeTπ equipped with the labelingMπ will be the compact presentation of

φ. The pointing relation←φ is not yet defined. We first setn+

1
←φ n−

2
each time

n−
1 <+

φ n+

2 (that is, each time(n−
1 , n+

1 ) <1 (n−
2 , n+

2 ) in the compact presentation ofφ).
Each flat proof structureRπ(n) associated to a noden of π contains a unique flat link.
We denote[(n) its conclusion edge. There exists a unique chainn1 <1

π . . . <1
π nk = n

in π such that

Bπ(n2)(. . . Bπ(nk)([(n)) . . .)

is the premise of a?-link of n1. We setn−
1 ←φ n+. We then obtainφ.

3.5 Experiments and strategies

The detailed correspondence between proof-net and strategies shows that a thick subtree
of a cut free proof-netπ of N can be regarded as an even thick subtree of the corre-
sponding strategyφ = ΨN (π) (and conversely). But an experiment inπ is just a thick
subtree ofTπ together with a valuation of axioms (§3.g). We now define valuations
of axioms directly in games, to obtain a notion of experimenton MELLpol strategies.
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The correspondenceΨN then extends into a one to one correspondence between ex-
periments inπ and experiments inφ = ΨN (π) and that allows to show that the result
of a proof-net’s experiment is the desequentialization of the corresponding strategy’s
experiment.

(3.q) Valuation of axioms (2).If (t, f) is an even thick subtree ofφ (equivalently, an
element ofP (φ), §3.k) then avaluation of axioms in (t, f) is the choice, for each pair
a <+

t b such thatαN (a) = αN (b) is an atomX , of an element of the web ofX .
The set of valuated thick subtrees ofφ is denotedVETST(φ) and the set of valuated
legal plays ofP (φ) is denotedV (P (φ)). Proposition 5 extends into a correspondence
between these two sets.

Even thick subtrees of a strategy inherit the labeling by moves and pointers from
the strategy (§2.e). We do the same for thick subtrees of proof-nets. If (t, g) is a thick
subtree ofTπ then we define three labeling functionsRt, St andBt on t as follows.
For each noden of t, Rt(n) is a copy of the flat proof structureRπ(g(n)). If n <1

t n′

thenSπ(g(n))(g(n′)) is a !-link L of Rπ(g(n)) which has a corresponding copyLc

in Rt(n). We setSt(n)(n′) = Lc. The one to one correspondenceBt(n
′) between

conclusions ofRt(n
′) and conclusions ofLc is then simply acopyof Bπ(g(n′)).

Lemma 6. Let N be a negative MELLpol formula,ΨN extends into a one to one cor-
respondence between the experiments onπ and the experiments onφ = ΨN (π). More-
over, if e is an experiment onπ then the valuated thick subtreeD+(ΨN (e)) (up to
re-indexing) is the result ofe.

The extension ofΨN is straightforward, because the condition that the functions
Sπ(n) are one to one in the definition of proof-nets (Def. 3) is not necessary to makeΨN

work. But one needs to be careful for the slicing of Player’s pointers when reconstruct-
ing a proof-net experimente. If there are two pointersn− ←+ n+

1 , andn− ←+ n+

2

such thatn+

1 andn+

2 correspond to the same node in the strategyφ then, when go-
ing through the same partial flat proof structureR, these pointers define inR the same
edgea (from a!-link to a?-link or a conclusion) rather than two edges. This identifica-
tion corresponds to a sum of multisets in the labele(a). There is a labeling of pointers
of ΨN (e) which coincides withe on sources of pointers. It is then easy to check that
D+(ΨN (e)) is the result ofe.

As an immediate consequence of this last Lemma we have that:

Proposition 7. If π is a cut-free MELLpol proof-net of negative conclusionN , then the
setD+(VETST(ΨN (π))) = D(V (P (ΨN (π)))) is the relational interpretation ofπ.

This result proves that the desequentialization (togetherwith valuations) defines a
logical functor from polarized games to the relational model. By using techniques pre-
sented in [Bou03],D can be composed with a functor forgetting some results, to obtain
a logical functor from polarized games to coherence spaces or to hypercoherences.

The results presented here extend to the full fragment of LLpol by shifting from
trees to forests and by using the isomorphism!(N & M) = !N ⊗ !M and the distribu-
tivity laws of linear logic.

An important technical point concerns the co-visibility condition. Co-visibility of
legal plays is required in original polarized games but, according to [Lau03], it does
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not play any role for proving fullness and faithfulness (as previously observed, P-views
are always co-visible). Here it is mandatory to not require this condition on elements of
P (φ), otherwise Prop. 5 will not be valid andD will be a lax functor. To our opinion,
there is nothing deep here, just the usual flexibility of definitions in game semantics.

Since the desequentializationD provides good results for the game semantics of
MELLpol, we hope that it can be applied to others game semantics, for instance for
syntaxes with imperative features, in order to obtain static semantics of these syntaxes.

A corollary of Proposition 7 is that all the results of experiments are equitable. This
property, coming from alternation of moves in plays, surelyallows for narrowing the
relational model to equitable results. But others properties of plays such as visibility are
much harder to trap on the side of the relational model (at least we fail).

Another direction to look at is the faithfulness of the relational model. Factoring
the interpretation through abstract Böhm trees by mean of thick subtrees allows for a
more combinatoric approach of this long standing conjecture. But for the moment, we
only have some limited results in that direction. Shifting to an untyped setting with
real Böhm trees shall provides a faithfulness result (at least by using Böhm’s theorem)
which would be to be related with the typed setting.
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