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Abstract. We relate the dynamic semantics (games, dealing with ictierss)
and the static semantics (dealing with results of inteoas) of linear logic with
polarities, in the spirit of Timeless Games [BDER97].

We carefully analyze Laurent’s polarized proof-nets (viatior the game seman-
tics is full and faithful [Lau03]) and we detail the precis#espondence between
cut free proof-nets and innocent strategies, in a framewadted to Béhm trees.
We then introduce a notion of thick subtree that is used tmdefidesequential-
izing operation, forgetting time in games. This allows wusshow a deep relation
between plays in games and Girard’s experiments on prdsf-iiée then obtain
our main result: desequentializing the game interpratatfoa polarized proof-
net yields its generic static interpretation.

Introduction

Denotational semantics interpretpigram(a proof or a\-term) as a structure repre-
senting all its possible interactions (via cut eliminat@rvia G-reduction) with others
programs. In static semantics only thesult of the interaction is represented. In dy-
namic semantics (games) an interaction is fully represebyea sequence (play) of
actions (moves) of the program (the Player) and the enviemtifthe Opponent).

There are many references for game semantics. For an ictiodusee [AM98].
In this paper, we use Hyland-Ong style polarized games [£pu@ such games, a
move can justify itself bypointingto a preceding move. Laurent recently proved that
polarized game semantics is full and faithful [Lau03], fbe proof-nets’syntax of
linear logic with polarities LLpol. Proof-nets have been introduced together withdine
logic [Gir87] as a more parallel syntax than sequent cakuline static interpretation
of a proof-net is the set aésults of experimentsn this proof-net.

The comparison between static and dynamic semantics isgiyronotivated by
Ehrhard’s result ([Ehr96]) stating that the extensiondlapse of sequential algorithms
(a game model) is the hypercoherences semantics (a statamsies). In [Mel03], by
introducing a suitable game semantics (extensional garRes). Mellies gives a new
proof of this result which better details the extensionaiteat of games.

The relational modelis the genericstatic semantics of linear logic, in the sense
that the others are generally derived from this one by inteirt) new ingredients (like
various coherence relations, see [Bou03]). In that venpkrsemantics, formulee are
sets and proofs are relations.

* This work was partly supported by the CNR-CNR&eraction and Complexitgroject.



A naiveapproach to the comparison is to consider an operdiiomhich maps a
play (an interaction) to an element in a setredults as in Figure 1. The difficulties
are then: (i) to build a static semantics with setsedults(a natural candidate is the
relational model); (ii) to turrD into alogical map,i.e. such that the diagram commutes
for proofs.

This approach is successfully used in [BDER97],
Syntax by introducing an ad hoc static semantics, (hg-
~ ~ polarized pointed relational modeind in [Bou04],
9ames— p — static semantics py introducing an ad hoc game semantiosydered

.. H 1
play|—>_ . r_esult gameswhere plays explicitly carries results of inter-
Fig. 1. ProjectionD actions.

In this paper, our aim is to clarify the relation between aynstatic and dynamic
semantics, without using ad hoc interpretations. We intceda desequentializatidn
of justified plays, which for the source is Laurent’s poladzyames, and the target is
the relational model. The desequentialization maps a pldyd tree of its justification
pointers.

By seeing the relational model (the target) as a game seesavithout time (through
the time forgetful projectior), we also pursue the goal of introducing static semantics
to the operationally rich point of view on computation of gasemantics.

In polarized games, proofs are interpreted as fimit@cent strategiesSuch strate-
gies can be presented as finitees of Player’s viewsTrees of P-views are particular
instances ofbstract Béhm treeCur98,CH98]). When it comes from the interpreta-
tion of a proof, a tree of P-views can be thought of as an attgr@sentation of the
Bohm tree of a simply typed-term. (Pointers represent variables binding).

Since the polarized game semantics is full and faithfukgref P-views are in a
bijective correspondence with cut free polarized prodérd the same type. By an-
alyzing the shape of cut free proof-nets, we detail this espondence in a very
direct way (comparatively to [Lau03]). To do so, we restadarselves to the additive
free fragment, MELLpol, of LLpol. This minimize the complgxof the definition of
proof-nets, at a low cost, since additives can (almost) lbeeed in MELLpol.

Here is a sketch of the correspondetceObviously, the Reader unfamiliar with
proof-nets and games will find the definitions in the body ef plaper.

A tree of P-viewsp is a finite treef,, together with two more datum: a namirfig
of nodes by moves and a relatien,, specifying justification pointers between nodes.
A MELLpol proof-netr is also a finite tred’; (representing the nesting bboxes) but
together with: a labeling?,. of nodes byflat proof structuregwhich are finite oriented
graphs with pending edges) and a struct{fg, B, ) relating flat proof structures to
each others (this data can be considered as the frontiehg bbbxes). Whenr is in
normal form (cut free), the correspondenicestablishes a tree isomorphism between
T, andt,. Moreover the flat proof structures afhave a very particular shape: each
flat proof structure consists of ormmbinedpositive connective and oneombined
negative connective together with edges connecting thegoiag through the frontiers
of !-boxes. Through?, moves oft, correspond to theseombinedconnectives and
pointers are just another way to draw the connecting edges.
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Fig. 2. Desequentialization

The core ingredient of the paper is the notiorthitk subtrega generalization of
the usual notion of rooted subtree, which we present in &edtj devoted to trees. We
use thick subtrees both at the term level and at the type level

Type levelSection 2). A MELLpol formulad can be thought as a tree (theena
in games). The desequentializatibxip) of a playp in A is a particular thick subtree of
A. And there is a (bijective) encoding of (classes up to isgphimm of) thick subtrees
of A into the set of results of typ4.

Term level(Section 3). Thick subtrees are used at the term level botepgresent
experiments in proof-nets and to expressittiensic dynamioof plays of a strategy.

The desequentializatioP factors into a negative paf?~ followed by a positive
partD* (Fig.2).

If pis a play in an innocent strategythen D~ (p) is an even thick subtreeof t,.
Conversely, any even thick subtreef ¢4, can be lifted into many plays ig. This is just
a matter of extending the tree orderwinto a well-shaped total order. Intuitively, the
tree order ok corresponds to the internal dynamic of the program (p@si@layer) that
one will find in any interaction between this program and arirenment. The new part
of the order is then provided by the environment (negatipgtent) during a possible
interaction. The thick subtree together withthe total order is called a multiplexed
position in recent Curien’s terminology (unpublished).

An experiment in a proof-netr is just an even thick subtreeof 7)., together
with an arbitraryvaluationv of axioms. By extending the correspondetdceetween
proof-nets and trees of P-views to their thick subtrees, wesvghat the positive dese-
guentializationD™ of s (together withw) is the result of the experimeat This proves
that the desequentialization is a functor which maps a finitecent strategy (a set of
plays) to the static interpretation of the correspondirappinet.

Figure 2 sketches the full picture we then obtain.

The notion of valuation (not represented in the figure) magrfere with the un-
derstanding of the full picture. In polarized games, an ai®nepresented by a single
element (a move labeled by the name of the atom) while, indlaional model, it is
a set of results, aveh Valuations of atoms fills this gap by associating webs to @sov
coming from atoms. For a first reading, one can restrict teése of MELLpol without
atoms, where valuations are useless.



4

1 Trees

(1.a) TreesA finite tree ¢ is a partial orde(I;, <:), wherel, is a finite set, thindexing
set having a least element, theot of the tree, and such thatdf<; ¢ andb <; ¢ then
a <¢; borb <; a.In the sequel, trees will all be finitdhe cardinalityit of a tree
t = (I, <) is the cardinality of/;. Elements of a tree areodesand maximal elements
areleaves The associated precedence relation is denoted/bfsoa <} b means that
a <t banda <; ¢ <4 b = ¢ = aorc = b). Thetreelsons son(a), of a node
a are the nodes such thata <} b. If a is a node oft thent|a is the tree defined on
{be I, ]| a<b}by<,. Alabelingin a tree is a function fronf, to a set ofabels An
ordered treeis a tree together with, for each nodga total ordex, on the sons of.

(1.b) Thick subtrees.A tree morphism f : ¢ — ¢ is a functionf : I; — I;» which
maps the root of to the root oft’ and such that it. <} b then f(a) <}, f(b). An
ordered tree morphism is a tree morphism preserving the ordsons.

(d,0) (c,0) (d,1) (d,2) cd A thick subtree of a treet is a trees to-

I N \ gether with a tree morphisrfi: s — ¢. The
(b,O)\ /(b, 1) . b ¢ terminology is reminiscent from the fact that
(a,0) \a/ different nodes of can be mapped to the same

node oft. Typically, in Figure 3, the |.h.s. tree

Fig. 3. An example of thick subtree together with the first projection function, is a
thick subtree of the r.h.s. tree. Observe that wlfiés injective, s is just a non empty
rooted subtree of (up to an explicit renaming of nodes).thick subtree morphism
between two thick subtreds, f) and(s’, f’) of a (same) ordered treds a tree mor-
phismg : s — & such thatf’ = f o g. If there exists an injective thick subtree
morphismg : (s, f) — (s', f') then(s, f) is less thar{s’, f’). This defines an order on
thick subtrees.

(1.c) Re-indexing.In this paper, indexing sets are irrelevartze work on trees, se-
quences, ordered trees and thick subtrees up to isomortisthe respective notions

of morphism). A concrete representation of ordered ttge® re-indexings given by

the grammart := (¢1,...,t,) (an ordered tree is a tuple of ordered trees.) We also use
the following convention focanonicallylocalize an ordered tree. The indexing $get

is a set of words of integers. The roottds the empty word and ifw is a node having

n sons, then these sons are 1, ..., w - n, in this order. The tree order af is then

the prefix order. More generally, a set of words defines a tge(efix closure). We
denotew - a the concatenation of a word with an element.

2 Types

Formulae of multiplicative exponential linear logic withlpdties (MELLpol) are given
by:

N:=?X+|L|NBN|?P (negative formulee)
P=IX|1|P®P|IN (positive formulae)



with the usual De Morgan laws for the orthogofial)- and whereX is any element
of a given set of atom¥. Here, as in [Lau03], atomsX{, X ) are not formulae. This
restriction is necessary for obtaining the faithfulnesshef game semantics. For the
same reason, MELLpol proof-nets (see Section 3) requirintneduction of aflat (b)
modality which does not belong to MELLpol and which can beutjiat of as avhy not
(7) modality, in semantics.

(2.a). The relational interpretation of a formul&is a countable set, denotéd| and
called theweb of A. The web ofA* is always the same as the web 4f The web
of 1 (and the web ofl) is the singleton sef«}, (this set is intended to ke neutral
element of the Cartesian product of setsxshall be thought of as a notation for the
empty tuple). The web off ® B (or of A % B)is |A| x |B|. The web oflA (or of
?A) is the set of finite multisets of elements|af]. For each atonX € V, an arbitrary
enumerable set is chosen as web (bothXoand its orthogonal). For convenience, we
also setbA| = |7A|.

To avoid some bureaucratic aspects, we will work on MELLpgota associativity
and neutrality of multiplicatives. In the relational modilis amounts to working up to
associativity of the Cartesian product and neutrality-of.

2.1 Arenas and the desequentialization

An arena A is a labeled ordered finite forest together with a polaritysifive or neg-
ative. For the game semantics of MELLpol, we restrict omaelto finite trees. The
labeling function is denoted 4. The labels of leaves are elementsbf) {x} and the
labels of others nodes are all equakto

The polarity of the arena is extended to moves by choosingdleity of the arena
for the root and by saying that two successive nodes havereiff polarities. This
corresponds to the usual Player/Opponent polarity asvistipositive corresponds to
Player and negative to Opponent.

Basically, in MELLpol, the arena associated with a formdles the syntactic tree of
this formula, up to associativity and neutrality of muligaitives and where exponentials
shift polarities.

(2.b) Arena of a formula. Let A be a formula. The arena {1+ 112+(X)
of A is defined as follows. The polarity of the arena as- \
sociated toA is the polarity of the formula. The tree of 117 217 (X) /22*

A and of A+ are equal. The tree df or of an atomX |+ \ oy
is the tree reduced to one nodg: If ¢ is the tree ofN 1 \ /2/3
then(¢) is the tree of V. If (¢4, ...,¢p) is the tree ofP E
and(ty, ..., ty) is the tree ofP’ then the tree of ® P’ .

iS (t1,...,tp.th,...,t,). We adopt the canonical local- Fig.4.The arena ofVy

ization of ordered trees on arenas. The labels are chosérttsaicthe label of a node
coming from an atomX or X is X and the labels of the others nodes areCon-
versely, every arena is the arena of a unique formula (up-indexing of labeled
ordered trees). We further identify arenas and formulaeur€ig shows the arena of
No=?1%7?2X+)®?(1X ®!1) % ?1 with the relevant part of the labeling.



(2.€).In the arena of a formula, each sub-formula ofl corresponds to a move. Two
sub-formulae can correspond to a same mguaut, for each move, their israaximal
sub-formula F'(a) of A corresponding ta. For instance, the first occurrence?dfin
N, corresponds to the movd, but F/(11) is 71 % 7X L.

(2.d). A legal justified tree (LJT, for short) onA is a finite treg(1, <) together with a
labeling functionf : I — I, and apointingrelation«— such that: (i)(7,<—*, f) is a
thick subtree of4; (ii) < extends the order* (i.e.—* C <); and (i) <! alternates
between positives and negatives. We consider that pearitktend to elements éf
by saying that the polarity af € I is the polarity off(a). So the sef is the disjoint
union of a set of negative nodés and a set of positive nodds™. Observe that (ii)
implies that— alternates betweef andI* (as<!). The notion of LJT encompasses
the game notion degal play. A legal playis a LIT whergI <) is a total order.

(2.e).Observe that a LIT has two tree structurds;, <;) and(I;, —;). We implicitly
generalize some notions on trees (e.g. thick subtrees afiggs) to LJT by considering
that(I;, <) isthe treeof the LJT¢. If ¢ is a LJT, a thick subtre@; , <, g) of (I}, <¢)
inherits a LJT structuré—,, f/) from ¢ by setting:f = f; o g and ifa <y b and
g(a) < g(b) thena — b.

Definition 1. ThedesequentializatioD(t) of a LITt = (I, <, <, f) is just the thick
subtreg(1, —*), seen up to re-indexing (81.c).

(2.f). A thick subtred(t, f) is equitable whent has as much positive nodes as negative
nodes. Observe that the thick subtree associated with amlemgth, legal play is equi-
table. Conversely if a thick subtrée f) of an arenad is equitable then there exists a
total order extending into an even length legal play. (Proof by cases on the numiber o
leaves and strict nodes bbf each polarity).

(2.g) Valuation (atoms).Let A be a formula. Lef(t, /) be a thick subtree ofi. A
valuation v of (¢, f) is a partial labeling of nodes ofgiven by the choice of an element
x of the web ofX,, for each node of ¢ such thatv4(f(a)) = X (in that casef(a) is

a leaf of A anda is a leaf oft). When f(a) is a leaf ofA andas(f(a)) = * we set
v(a) = *. S0, each node of ¢ such thatf(a) is a leaf ofA and no other is labeled.

A result of typeA can be seen as a concrete representation of an equivalesse cl
of valuated thick subtrees of for the equivalence by re-indexing (81.c). This repre-
sentation commutes to the orthogonal. An elemeotft | X | (resp. the elementof [1]),
is simply the unique thick subtree of the tr@g together with the valuation mapping
its unigue node ta: (resp.x). Leta = ([ag,...,a}, ],...,[af,...,ak ]) be an element
of |P| whereP is!N; ® ... ® !Ny (IV; can be an atom). For ea¢h< ¢ < k and for
eachl < j < ny, a§ is an element of the web d¥f;, SOaj- represents a valuated thick
subtree(t!, f/,v7) of N;. The valuated thick subtree representeditig then the tree
(t,..., tﬁk) (seerunordered together with: the functiorf mapping its root to the root
of the arena of” and equal to> | ff on the other nodes; and the valua@jnv{.
Proposition 2. Let A be a formula. The s&TST(A) of valuated thick subtrees of
(up to re-indexing) is equal to the web 4f

Direct, by induction omA. So, the desequentialization of a legal play4together
with a valuation is an element of the web_&f



3 Terms (proof-nets)

(3.a).A flat proof structure

R is a finite directed graph, P\ /Q N\JM
built using links of Figure 5, @

with atleast one pendingout- [P ® Q 1 N®M
going edges, called the con-

clusion edges. A label of an

edge is either a formula, pos- @
itive (P, Q) or negative {V, XL
f\fggoor:;} g(t(ir)n' g(r);:;isfgrr_- Fig. 5. Links of flat proof structures
mulabF, whereF (or G) is either a positive formula or the orthogoméf- of an atom
(so F+ or G+ is either a negative formula or an atoX). When connecting two links
by an edge, the two labels of the edge must match.

Polarities of MELLpol formulae extend to labels as followsofs X are negative,
their orthogonal are positive and flat formulee are negative.

In a link, an outgoing edge is@nclusiorand an incoming edge ismemiseIn a!-
link, the edge labeletG~ is thefront conclusiorand the others edges are thexiliary
conclusionsThere is oné-link (resp.?-link) for each natural number of auxiliary con-
clusions (resp. premises). Fiiinks and!-link the ordering of incoming and outgoing
edges is irrelevant (to remind it we draw them with a doulvle)li

Observe thaiR is acyclic, because for each link, the label of each conciuss
strictly bigger than the label of each premise.

(3.b) Correctness criterion.Given a flat proof structuré, we define a new directed
graph, , . A flat proof structur® is correct if: (i) the graph obtained (starting froiR)
by inversion of every edge with a positive label is acycliag &ii) either R contains no
flat link (b) and has exactly one positive conclusion fbcontains exactly one flat link
and has only negative conclusions.

(3.c).A l-box (Ry, Br) fora!-link L is a correct flat proof structui®,, together with a
one to one correspondenBg between the conclusion edgesiof and the conclusions
of L such that: the conclusion label&@* of L (its front conclusion) is the image of a
conclusion edge oR labeled byG; and the other edges’ labels are preserved.
Definition 3. A proof-netr is a finite treeT” and three labeling function®, S, B of
nodes ofl" such that:

— for each node: of T', R(n) is a correct flat proof structure and(n) is a one to
one correspondence between the sons aifid the!l-links of R(n);
— if ' isason ofn in T then(R(n'), B(n')) is a!-box for thel-link S(n)(n’).

We do not make any requirement on the lapetl) of the rootr of =: this label is
just here to ease the writing of the definition and it can belgdbrgotten.

Observe that, ifi is a node of a proof-net = (T, R, S, B) and ifT}, is the maximal
subtre€l’, of ¢ with rootn, thenr,, = (T, Ry, , S|z, B|r,,) is @ proof-net.

The conclusions of a proof-net are the conclusions of it§sdlat proof structure.
A MELLpol proof-net is a proof-net where conclusions are not atoms or flat formulae

We do not describe the cut elimination procedure on prodd:ne




3.1 Relational semantics

(3.d). An experimenton a flat proof structur® is a labeling functiore on edges of?
such that:

— if a is a conclusion of an axiom link introducing an atotn and if its other con-
clusion isb thene(a) = e(b) ande(a) € | X|;

— if a is the front conclusion of &link andby, ..., b, are the auxiliary conclusions,

labeled respectively bWV, bF1, ... b F, then for each, e(b;) is a multiset of points

of |F;| ande(a) is a multiset of points of N |;

if a is the conclusion of a-link or of a L-link thene(a) = x;

if a1 anday are the first and the second premises aigthe conclusion of &-link

or of aZ-link thene(a) = (e(a1), e(az));

if a is the premise andlis the conclusion of alink thene(b) = [e(a)];

if a1, ..., a, are the premises aridis the conclusion of &-link thene(a,), ...,

e(an) ande(b) are multisets and(b) = e(a1) + ... + e(an);

if a is a premise of a cut link, and if its other premisé ihene(a) = e(b).

Observe that(a) is always an element of the web of the label of the edge

An experiment on a flat proof structure can be considered asiae of labels for
axiom links and-links which satisfies the constraiata) = e(b) on cut links, when
propagated by other links.

(3.e).If R has only negative conclusions andeifis an experiment o thenr(e),
theresult of e, is the familya — e(a) indexed by conclusions aR. This notion of
result extends to any flat proof structuRé and to any experimert on R’ by setting
r(e’) = r(e) wheree is an experiment on a flat proof structuRedefined as follows. If
R’ has a positive conclusion we add belowlink. Then, for each conclusion of type a
flat-formula we add below a unafylink. The resulting proof structure iB and there
is a unique extension ef into an experiment o which ise.

(3.f). Experiments on proof-netsand their results are defined inductively nras fol-
lows. If the root ofr is the flat proof structurd? then an experiment, on 7 is an
experiment on R together with, for each proof-net, associated with &link v of
R, a multiset[el ..., ek] (k, € IN) of experiments onr, which satisfies the fol-
lowing. If a is the front conclusion and,... p,, are the auxiliary conclusions of
and if, for eachi, the result o&?, is (z;,1,"",...,v/"") thene(b)) = S v}, ...,
e(bn) = Zf;l v;"" ande(a) = [z1,...,zk,]. The resulir(e,) of e, is the result ok.

Hence on a proof-net, an experiment consists of two cho{@es:copying choice
for !-boxes, inductively given by: taking one copy of the rootroéind, for each-link
of the root, choosing an arbitrary finite number of copieshef proof-net above, then
starting again for each of these proof-nets; (ii) a choicé&abéls for axioms links in
each (copy of) flat proof structure which have been selecteithd the first choice.
Once propagated, this choice have to obey to the only consstiequality of labels
on cut links.

Observe that the first choice (i) is just the choice of an eabjtthick subtree of’;
and that there is no constraint on (i) and (ii) when there isutdink.



(3.9).To summarize, in this paper, axperiment on a cut-free proof-netr is regarded
as given by: a thick subtreeof T’;; together with, for each axiom link is introduc-
ing an atomX, the choice of an element of the web &f We call this last choice a
valuation of axioms

(3.h). The result of an experiment on a MELLpol proof-metvith only one conclusion
N is an element of the web @¥. Therelational interpretation of a proof-net = is the
set of results of experiments an for all possible experiments.

3.2 Cutfree MELLpol proof-nets

In this section, we describe and sim-
plify the structure of cut free proof-nets.
We start by introducing two simplifica-
tions, there will be a third one. +

(3.i). First, we work with multiplicative
connective up to neutrality and associa-
tivity. In flat proof structures there are trees
of tensor links and -links with front con-
clusions of-links above. We identify max-
imal such trees, calledh-trees to links
(drawn with a triangle). The same for trees
of &-links and_L -links with ?-links above.
We then speak abo@-trees

Second, we only consider MELLpol
proof-nets with only one negative conclu-
sion. If needed we can always transform a
(cut free) proof-netinto such a MELLpol
proof-net by adding well chosen links to Fig. 6. What is in the box?
the flat proof structure at its root (the same
way as in 83.e).

Observe that, if the conclusions of a cut free proof-net a@nn (before simplifi-
cation) then we can recover this proof-net from its simplifiersion.

Let 7 be a (simplified) MELLpol cut free proof-net. We detail theaple of the flat
proof structures contained in. Let R be a flat proof structure af. There are cases:
one with exactly one axiom-link (Fig. 7) and one without ari¢Fig. 6).

Each flat proof structure occurringinis either in a-box or at the root ofr. Hence
R has conclusion edges labelefd, . .. ,bF), and exactly one negative conclusion edge
e~ labeledG+ (the only conclusion iR is at the root ofr).

According to the correctness criterion (§3.B)has only one-link L,. Since this is
the only link which has a positive premise and a negative le@ian, all the links with
positive conclusions must be abaligin R. There are two cases: (i) either the premise
of L, is the (positive) conclusion of an axiom link,x and there is no other link with
some positive conclusions iR; (ii) or the premise of_, is the conclusion of &-tree
te (possibly reduced to an edge or td-#ink) with front conclusions of-links above
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and there is no other link i introducing a positive formula (we already found the
uniqueb-link).

In the first case, the axiom also introduces a negative atom
@ X which cannot be the premise of any link. $dhas no other
® link than L, and Ly, (in particular,R is a leaf ofr).
Q(j \)& Now the second case. The conclusi@h is a MELLpol
+ — formulaN (if G+ was a atomX then there will be an axiom

_ ] introducing it in R). Above the edge—, labeled byN, there
Fig. 7. Axiom's case g g %-treetz with ?-links above. There is no othédink in-
troducing negative conclusions than the above mentioriedete was one, this must
be ab formula (because we already found tie conclusion) but flat formulee are only
introduced byb-links (there is only one[,) and!-links (another one than the above
mentioned will also introduce a positive conclusion). Sitige premises of th&link
areb formulae they have to be chosen among the conclusidy of of the!-links. The
others conclusions of these last links which are not presra$@-links are the conclu-
sionsbFy,...,bF, of R. So there is a pairwise connectiop of: the conclusion of
and the auxiliary conclusions of tHdinks with: the premises of the-links and the
conclusions ofR different frome™—.

The third simplification we consider is the following. Obgeithat thel-links oc-
curring in a flat proof structur& of a cut free proof-net are totally ordered by mean
of the ordering of premises of the uniggetree of R. As a consequence, rather than
using S for matching!-boxes with!-links, we considef’. as an ordered tree where the
ordering of sons of a node is the same as the ordering of thénks of R(n). (This
cannot be done in a canonical way when there are cut links).

3.3 Game semantics

In polarized games, a MELLpol proof-net of conclusidnis interpreted as &inite
balanced total innocent stratedy the arenaA, called further aMELLpol strategy .
In the sequel, we restrict ourselves to a negative type (ttension to positive types is
easy).
(3.)). A Player’s view (P-view for short) is a legal play such that ifs; <! s; ands; is
an Opponent's move then «— s; (the Opponent always points to the last move).
Traditionally a strategy is a set of legal plays satisfyinme properties (e.g. prefix-
closure,determinisifu. Composition of strategies is then definpdintwiseon legal
plays: two interacting legal plays are interleaved andhim tesulting sequence, the
part on which the plays have interacted is hidden. We do raatlirall the definitions
of game semantics and polarized games. It is well known thia¢n a strategy is in-
nocent, all its legal plays are determined by its P-viewss Bllows for an alternative
description of innocent strategies which only uses P-viewigh we next relate to the
traditional presentation (§83.k and Prop. 5).

Definition 4. Afinite innocent strategyp in a negative arena is an even prefix-closed
set of P-views which is finite ardkterministicthe longest common prefix of every two
elements of the set is of even length. We further congidas the prefix tree of its
P-views regarded, up to re-indexing, as a particular L3}, <, f) (in which every
branch is a P-view).
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(3.k) Traditional presentation. The set of legal play$(¢) associated with a finite
innocent strategy on A is the smallest set such that: (i) the P-views)are in P(¢);

(i) if there is a visible legal play; - ab such thats € P(¢) andv™ (s - ab) is a P-view
of ¢ thens - ab € P(¢). Observe thaP(¢) is an even-prefix closed set of visible even
length legal plays which is not, in general, finite.

(3.). When(I, <, «, f) is a LT, we further consider the following rela- 3+
tions: thePlayer's pointers—* = «N(I~ xIT); theOpponent's pointers
—~ =« NI*" xI7);thePlayer's precedence ™ = <! N (I~ x IT);

theOpponent's precedenee™ = <'N(I* xI~);and thePlayersorder [ 112

(<t U+7)*. The Player’s order o is still a tree because-* C <. 21|‘
(3.m).A LJT is visible when its Player’s order contains the Player’s point- 2:r
ers. 117
: e . [
(3.n). The negative desequentializationD~((s, <)) of a visible legal 2+
play (more generally, of a visible LJT) is the LIT;, (<™ U «7)*, «). 11',

Each branch of this tree is a P-view. Thiew function v maps visible [
legal plays to P-views: a legal playwith last movea is mapped to the 1|
unique branch of the treB~ (s) with leaf a. The positive desequential- €
ization D7 is defined dually, by reversing the roles of Player and Oppqiig 8
nent, onco-visibleLJTs (the dual notion of visible LJTs). We will onlyuse = =" P
D on the image ofD~ where all LJTs are co-visible (because the Opponent always
points to the last move). On LJTs the desequentializafioiactors throughD~ and

D™, moreoverD andD™ coincide on the image dP~. So, for a visible legal play,

D(s) = D*(D"(s)) = D(D"(s)).

Figure 8 shows a legal playin the formulaV, (of Fig. 4) which 112+ 3+
is visible (but not co-visible). If the Player's mové2 was set to point
to the second occurrence bf (from bottom to top) then the play will

not be visible. Figure 9 shows the negative desequentiaizaf p 2|+
(the Opponent’s pointers, trivial, are omitted). 117
(3.0).1fa LJT tis such that each Opponent’s move has exactly one son 1+

then itscompact presentationis itself but where, in the tre@;, <;), e
each pair of successive nodes<™ b is regarded as one node, b) b

An even thick subtreet of a finite innocent strategy is a thick sub- Fig.9.D~ (p)
tree of ¢ such that each Opponent’s move has exactly one sort (sogiven by an
arbitrary thick subtree of the compact presentation)ofThe set of even thick subtrees
of ¢ is denotedETST(¢).

Proposition 5. Let ¢ be a finite innocent strategy. ¥ is a legal play of¢ (ie s €
P(¢)) thenD~ (s) is an even thick subtree gf Conversely, if (together with a tree
morphismf) is an even thick subtree gfthen any total ordeK; on I, which extends
<; and preserves the Player's precedence (ife. <7 =<;") uniquely defines a legal
play (I3, <s, <, f:) which is an element aP(¢).

Proof by induction on the cardinal ef(resp.t).
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(a) Strategy (b) Go-between (c) Proof-net
Fig. 10.Example

(3.p). Afinite innocent strategy in a negative arend is: total when for each Player’s
movea of ¢, the sons of: in ¢ are all the sons ofi in A; balancedwhen for each
Opponent’s move, if b is the son ol thena andb are mapped to the same label by
aa. A MELLpol strategy is a balanced total finite innocent st

3.4 MELLpol proof-nets and strategies

Let V be a negative formula. A MELLpol strategyin N, together with/V, uniquely
defines a cut free MELLpol proof-net= ' (¢) as follows.

Figure 10 gives an example of the construction for the typgof Fig. 4).

The treeT’; is the tree of the compact presentation (83.0p 080 the Opponent’s
pointers (83.1) give the tree order®f. This relation will also gives the correspondence
S between-boxes and-links (it is drawn with double lines in the figure). Totaliof
¢ (83.p) ensures that evelink has an associatdebox. Each pair of moveg—, n™)
associated with a node partially defines a flat proof structutg(n) as follows. If
an(n™) = ay(n™) is an atomX, R(n) is a flat proof structure consisting of: one
axiom introducingX with ab-link n(b) connected to its conclusiaki* (as in Fig.7).
Otherwiseay(n™) = ay(n™) = * (since¢ is balanced) and?(n) is a partial flat
proof structure, similar to the one of Fig. 6. The maximal-$otmula F'(n~) of N
(82.c) determines &-treen(®) with, for each of its premises,, . . ., aq, a?-link W;
of conclusiona;. The premises of theselinks are yet unknown. The maximal sub-
formulaF'(n™) of N defines a-treen(®) with: for each of its premisels, . .., b,, a



13

I-link with principal conclusiorb;; and a-link n(b) having the conclusion of the(®).
The auxiliary doors of thé-links and the permutatiosnz, are not yet defined. In the
partial proof-net we then obtain (Figure 10(b)), we stijpresent the Player’s pointer:
if n" points ton, and if F(n1) occurs inF'(n2) at placei then we draw an edge from
n1(b) to theith ?-link 1; aboveny(%).

Next, we slice the pointers to reconstruct the missing edfiéise flat proof struc-
tures, by working inductively oty from leaves to root. When(b) points to a?-link
W; aboven (%) we draw an edge from the conclusionidp) to W;. Otherwisen(b) is
a conclusion of,,. It is thenpassedas an auxiliary door to the associatelihk L of
the flat proof structure below: a conclusion edge is drawn from the actual source of
the pointer, and this source is changed ihtdt is passed again, until the source of the
pointer is in the same flat proof structure as its targétjink. We then draw an edge
from the source to the target of the pointer. At the end ofphéxess we obtain.

Conversely, letrbe a cut free proof-net of conclusidvi. We construct) = ¥y ()
as follows.

We define a labelind/,. of the edges of the flat proof structuresmoby moves of
N. Intuitively this labeling is just a way to identify the oatances of sub-formulae of
N to the places where they are created in the proofen€he (unique) conclusion edge
of 7 is labeled by the empty word (the root 8f). Going upward through a-link, a
b-link or through a-link and its associatebox do not change labels. If is a®-tree
or a%y-tree andw is the label of its conclusion then itspremises are labeled- 1, .. .,

w - k (in that order).

We uselM; to associate to each nodef = an ordered pair made of one Opponent’s
moven~ and one Player's move™. For a flat proof structure containing one axiom
(Fig. 7) this is respectively the move labeling the negativaclusion and the move
labeling the positive conclusion of the axiom. For a flat fistaucture without axiom
(Fig. 6) this is respectively the move labeling the condusif theZ-tree and the move
labeling the conclusion of the-tree.

The treeT, equipped with the labeling/,, will be the compact presentation of
¢. The pointing relation—, is not yet defined. We first set] <, n, each time
ny <; ny (thatis, eachtimény,ni) <' (n5,n3 ) inthe compact presentation o.
Each flat proof structur®, (n) associated to a nodeof 7 contains a unique flat link.
We denote(n) its conclusion edge. There exists a unique chaircl ... <l ny =n
in 7 such that

Br(na)(.... Bx(n)(b(n))...)

is the premise of &-link of n;. We setn; <4 n. We then obtainp.

3.5 Experiments and strategies

The detailed correspondence between proof-net and seatgtpws that a thick subtree

of a cut free proof-netr of N can be regarded as an even thick subtree of the corre-
sponding strategy = ¥y () (and conversely). But an experimentiirns just a thick
subtree of7’. together with a valuation of axioms (83.g). We now define &itns

of axioms directly in games, to obtain a notion of experin@mMELLpol strategies.
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The correspondencEy then extends into a one to one correspondence between ex-
periments inr and experiments ip = ¥ (7) and that allows to show that the result

of a proof-net's experiment is the desequentializatiorhef ¢corresponding strategy’s
experiment.

(3.q) Valuation of axioms (2).If (¢, f) is an even thick subtree af (equivalently, an
element ofP(¢), 83.k) then avaluation of axiomsin (¢, f) is the choice, for each pair
a < bsuch thatey(a) = an(b) is an atomX, of an element of the web oX .
The set of valuated thick subtrees@fs denotedVETST(¢) and the set of valuated
legal plays ofP(¢) is denoted/ (P(¢)). Proposition 5 extends into a correspondence
between these two sets.

Even thick subtrees of a strategy inherit the labeling by @scand pointers from
the strategy (82.e). We do the same for thick subtrees offets. If (¢, ) is a thick
subtree off. then we define three labeling functiofs, S; and B; ont as follows.
For each node of ¢, R;(n) is a copy of the flat proof structud®, (g(n)). If n <} n’
then S, (g(n))(g(n’)) is al-link L of R.(g(n)) which has a corresponding cogy.
in R:(n). We setS;(n)(n’) = L.. The one to one correspondenBg(n’) between
conclusions ofR;(n') and conclusions of. is then simply acopyof B, (g(n')).

Lemma 6. Let N be a negative MELLpol formulay extends into a one to one cor-
respondence between the experiments and the experiments ah= ¥y (7). More-
over, if e is an experiment o then the valuated thick subtré@™ (¥ (e)) (up to
re-indexing) is the result af.

The extension of?y is straightforward, because the condition that the fumstio
Sy (n) are one to one in the definition of proof-nets (Def. 3) is na@ssary to makéy
work. But one needs to be careful for the slicing of Playeg®pers when reconstruct-
ing a proof-net experiment If there are two pointera~ «+ nf, andn™ «* nJ
such thatr] andnj correspond to the same node in the strategyien, when go-
ing through the same partial flat proof structétethese pointers define iR the same
edgeqa (from a!-link to a?-link or a conclusion) rather than two edges. This identifica
tion corresponds to a sum of multisets in the ladfel). There is a labeling of pointers
of ¥ (e) which coincides withe on sources of pointers. It is then easy to check that
D+ (Wy(e)) is the result of.

As an immediate consequence of this last Lemma we have that:

Proposition 7. If 7 is a cut-free MELLpol proof-net of negative conclusignthen the
setDT(VETST(¥y(7))) = D(V(P(¥n(7)))) is the relational interpretation of.

This result proves that the desequentialization (togettir valuations) defines a
logical functor from polarized games to the relational moBg using techniques pre-
sented in [Bou03]D can be composed with a functor forgetting some results, taimb
a logical functor from polarized games to coherence spackstypercoherences.

The results presented here extend to the full fragment ofoLby shifting from
trees to forests and by using the isomorphisii & M) = !N & M and the distribu-
tivity laws of linear logic.

An important technical point concerns the co-visibilitynclition. Co-visibility of
legal plays is required in original polarized games butoading to [Lau03], it does
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not play any role for proving fullness and faithfulness (esously observed, P-views
are always co-visible). Here it is mandatory to not requiie tondition on elements of
P(¢), otherwise Prop. 5 will not be valid and will be a lax functor. To our opinion,

there is nothing deep here, just the usual flexibility of dééins in game semantics.

Since the desequentializatidn provides good results for the game semantics of
MELLpol, we hope that it can be applied to others game semsnidr instance for
syntaxes with imperative features, in order to obtain ctsgimantics of these syntaxes.

A corollary of Proposition 7 is that all the results of expeeints are equitable. This
property, coming from alternation of moves in plays, sui@lpws for narrowing the
relational model to equitable results. But others propertif plays such as visibility are
much harder to trap on the side of the relational model (&t leva fail).

Another direction to look at is the faithfulness of the redaal model. Factoring
the interpretation through abstract Bohm trees by meanick gubtrees allows for a
more combinatoric approach of this long standing conjectBut for the moment, we
only have some limited results in that direction. Shiftimgan untyped setting with
real Bohm trees shall provides a faithfulness result (atlbg using Bohm's theorem)
which would be to be related with the typed setting.
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