Multicoherences

Pierre Boudes, LIPN

Workshop in Honour of Thomas Ehrhard's 60th Birthday

Power coherence spaces
Coherence

Uniformity
Neutral web

Accuracy

Coherent Differential PCF

Twenty years old story

Power coherence spaces

Definition

A power is an endofunctor of the category of sets and inclusions.

Definition

Let P be a power, a P-coherence space X is a triple $(|X|, \bigcirc_X, \asymp_X)$, |X| the web at most countable, $\bigcirc_X, \asymp_X \subseteq P(|X|)$ and $\bigcirc_X \cup \asymp_X = P(|X|)$.

Examples

- ightharpoonup 0-coherence space : relational semantics, **Rel**
- $ightharpoonup \mathcal{P}_{\mathrm{fin}}^*$ (finite non-empty sets) : hypercoherences, **NHc**
- $lackbox{}{\mathcal{M}_{\{2\}}}$ power = pairs : coherence spaces, $lackbox{NCoh}_{\{2\}}$
- ▶ $\mathcal{M}_{\mathbb{N}\setminus\{0,1\}}$ = finite multisets $\# \geq 2$, multicoherences **NMc**

Coherence

Definition

Let X be a P-coherence space. In P(|X|), \bigcirc_X is the coherence relation, \bowtie_X is the incoherence relation, $P(|X|) \setminus \bigcirc_X$ the strict incoherence relation, $P(|X|) \setminus \bowtie_X$ the strict coherence relation and $\bigcirc_X \cap \bowtie_X$ is the neutral relation, denoted N_X .

Definition

A clique of X (a P-coherence space) is a $x \subseteq |X|$ s.t. $P(x) \subseteq \bigcirc_X$. The linear negation exchanges \bigcirc_X and \bowtie_X .

Definition

X is deterministic if for each clique x of X, each clique y of X^{\perp} , $\#(x \cap y) \leq 1$.

Uniformity

Definition

(Informal) an expectation to interact with a fair value.

Example

$$M = \lambda b$$
. if b then {if b then M_1 else M_2 } else {if b then M_3 else M_4 }

Multiset-based exponentials:

$$\{([t,t],v_1),([t,f],v_2),([t,f],v_3),([f,f],v_4)\}$$

Uniformity

Definition

(Informal) an expectation to interact with a fair value.

Example

$$M = \lambda b$$
. if b then {if b then M_1 else M_2 } else {if b then M_3 else M_4 }

Multiset-based exponentials:

$$\{([t,t], v_1), ([t,f], v_2), ([t,f], v_3), ([f,f], v_4)\}$$

Uniformity

Definition

(Informal) an expectation to interact with a fair value.

Example

$$M = \lambda b$$
. if b then {if b then M_1 else M_2 } else {if b then M_3 else M_4 }

Multiset-based exponentials:

$$\{([t,t],v_1),([t,f],v_2),([t,f],v_3),([f,f],v_4)\}$$

► Set-based exponentials: $\{(\{t\}, v_1), (\{f\}, v_4)\}$

Neutral web

Property

NCoh, **NHc**, **NMc** enjoy a stronger¹ property than determinism : $N_X \subseteq \bigcup_{a \in |X|} P(\{a\})$.

Definitions

The neutral web $|X|_N$ is the set $\{a \in |X| \mid P(\{a\}) \subseteq N_X\}$. The neutral restriction of X is the <u>sub-space</u> of X of web $|X|_N$, that is $(|X|_N, \bigcirc_X \cap M, \asymp_X \cap M)$ where $M = P(|X|_N)$, and the neutral restriction of a clique X of X is $X \cap |X|_N$.

The space is reduced to the expected <u>sites</u> of interactions.

¹provided that the power is strictly monotone and preserves disjointness

Extensional collapse

Definition

The extensional collapse of a semantics, with respect to the simple types hierarchy, is its quotient by the partial equivalence relations \sim_A , given by equality on basis types and :

$$f \sim_{A \Rightarrow B} g$$
 iff if $x \sim_A y$ then $f(x) \sim_B g(y)$.

Theorem

The extensional collapse of **NCoh** and of the multiset-based **Coh** semantics is the set-based **Coh** semantics. The same for **NHc/Hc**, **NMc/Mc**.

The neutral restiction plays a crucial role in the proof (all the commutations one can expects).

Accuracy

- ► No full completeness (too simple?)
- Gustave function in coherence spaces
- ▶ In **Hc**, **Mc** subdefinability: for any clique x of **Bool**ⁿ \rightarrow **Bool** there exists a term M s.t. $x \subseteq [M]$.
- ▶ **Hc** extensional collapse of the sequential algorithms
- ▶ non-uniform is non-sequential. $\{([t],t),([f],t),([t,f],t)\}$

Coherent Differential PCF syntax

- Thomas Ehrhard, A coherent differential PCF. 2022
- ightharpoonup Differential lambda-calculus without the general sum M+N
- ▶ NCoh, NHc, NMc are valid semantics
- ▶ types: $A, B := D^n \iota \mid A \Rightarrow B$
- ▶ D applies to any type but $D(A \Rightarrow B) = A \Rightarrow DB$
- ▶ D applies to terms and triggers a rewriting $D(\lambda x^A.M:A\Rightarrow B)=\lambda.x^{DA}\partial(x,M):DA\Rightarrow DB$
- ▶ $|D^n \iota| = \{(\delta, i) \mid i \in \mathbb{N}, \delta \text{ word of n bits}\}$
- ▶ projections π_0, π_1 ; injections in₀, in₁; swap c; <u>delayed</u> sum θ
- ightharpoonup succ^d, if $_A^d$, let $_A^d$, π_0^d , θ^d ... at depth $_d$
- ▶ Don't confuse $D^0\iota = \iota$ but $\pi_i^0(M) = \pi_i(M)$.

Swap

Rel intersection typing system (examples)

$$\frac{\pi_{0}}{x: \iota \vdash 2: \iota} \frac{\frac{\vdots}{x: \iota \vdash 2: \iota} \operatorname{typing}}{x: []: \iota \vdash 3: \iota} \frac{\operatorname{num}}{\inf 1} \frac{\pi_{2}}{x: [1]: \iota \vdash \operatorname{if}_{\iota}(x, 2, 3): 3: \iota} \inf 1}{\frac{x: [0, 1]: \iota \vdash \operatorname{if}_{\iota}(x, \operatorname{if}_{\iota}(x, 2, 3), \operatorname{if}_{\iota}(x, 4, 5)): 3: \iota}{\vdash \lambda x^{\iota}. \operatorname{if}_{\iota}(x, \operatorname{if}_{\iota}(x, 2, 3), \operatorname{if}_{\iota}(x, 4, 5)): ([0, 1], 3): \iota \Rightarrow \iota}} \operatorname{if0}$$

Where:

$$\pi_0 = \frac{\pi_0}{x : [0] : \iota \vdash x : 0 : \iota} \text{ var} \qquad \pi_1 = \frac{\pi_1}{x : [1] : \iota \vdash x : 1 : \iota} \text{ var}$$

$$\pi_2 = \frac{\vdots}{x : \iota \vdash \text{if }_{\iota}(x, 4, 5) : \iota} \text{ typing}$$

Example 2, $x : D\iota$

$$\frac{\pi_{1} \quad \pi_{3} \quad \overline{x:[]:D\iota \vdash 3:\iota} \text{ num}}{x:[(\delta',1)]:D\iota \vdash \text{if}_{\iota}^{1}(x,2,3):(\delta',3):D\iota} \text{ if} 1 \quad \pi_{2}}{x:[(\delta,0),(\delta',1)]:D\iota \vdash \text{if}_{\iota}^{1}(x,if_{\iota}^{1}(x,2,3),\text{if}_{\iota}^{1}(x,4,5)):(\delta\delta',3):D^{2}\iota} \text{ if} 0}{\vdash \lambda x^{\iota}. \text{if}_{D\iota}^{1}(x,if_{\iota}^{1}(x,2,3),\text{if}_{\iota}^{1}(x,4,5)):([(\delta,0),(\delta',1)],(\delta\delta',3)):D\iota \Rightarrow D^{2}\iota} \text{ abs}}$$

Where:

$$\pi_0 = \frac{1}{x : [(\delta, 0)] : D\iota \vdash x : (\delta, 0) : D\iota} \text{ var}$$

$$\pi_1 = \frac{1}{x : [(\delta', 1)] : D\iota \vdash x : (\delta', 1) : D\iota} \text{ var}$$

$$\pi_2 = \frac{1}{x : D\iota \vdash \text{if}_{\iota}^1(x, 4, 5) : D\iota} \text{ typing} \quad \pi_3 = \frac{1}{x : D\iota \vdash 2 : \iota} \text{ typing}$$

Example 3, differentiation

$$\frac{\pi_{0}}{x:[f]:\iota\vdash if_{\iota}(x,2,3):3:\iota} \inf_{if1} \frac{\pi_{2}}{x:[t,f]:\iota\vdash if_{\iota}(x,2,3):3:\iota} \inf_{if0} \frac{\pi_{2}}{x:[t,f]:\iota\vdash if_{\iota}(x,if_{\iota}(x,2,3),if_{\iota}(x,4,5)):3:\iota} \inf_{iex} \frac{\pi_{2}}{\vdash \lambda x^{\iota}.if_{\iota}(x,if_{\iota}(x,2,3),if_{\iota}(x,4,5)):([t,f],3):\iota\Rightarrow\iota} \inf_{abs} \frac{\pi_{2}}{\vdash \lambda x^{\iota}.if_{\iota}(x,if_{\iota}(x,2,3),if_{\iota}(x,4,5)):([t,f],3):\iota\Rightarrow\iota} \exp_{abs} \frac{\pi_{2}}{\vdash \lambda x^{\iota}.if_{\iota}(x,if_{\iota}(x,2,3),if_{\iota}(x,4,5)):([(0,t),(1,f)],(1,3)):\iota\Rightarrow\iota} \exp_{abs} \frac{\pi_{2}}{\vdash \lambda x^{\iota}.if_{\iota}(x,if_{\iota}(x,2,3),if_{\iota}(x,4,5)):([t,f],3):\iota} \exp_{abs} \frac{\pi_{2}}{\vdash \lambda x^{\iota}.if_{\iota}(x,if_{\iota}(x,2,3),if_{\iota}(x,4,5)):\iota} \exp_{abs} \frac{\pi_{2}}{\vdash \lambda x^{\iota}.if_{\iota}(x,if_{\iota}(x,2,3),if_{\iota}(x,4,5):\iota} \exp_{abs} \frac{\pi_{2}}{\vdash \lambda x^{\iota}.if_{\iota}(x,if_{\iota}(x,2,3),if_{\iota}(x,4,5):\iota} \exp_{abs} \frac{\pi_{2}}{\vdash \lambda x^{\iota}.if_{\iota}(x,if_{\iota}(x,2,3),if_{\iota}(x,4,5):\iota} \exp_{abs} \frac{\pi_{2}}{\vdash \lambda x^{\iota}.if_{\iota}(x,if_{\iota}(x,3,3),if_{\iota}(x,4,5):\iota}$$

Conclusion

- Uniformity appeared to be a kind of anticipation of the sites of interaction
- This intuition works pretty well for the closed case where a clique encounter an anti-clique, as for the extensional collapses.
- ▶ I am still digging to understand coherent differential PCF.
- ► This calculus admits NCoh, NHc, NMc but not their uniform versions².
- ▶ What is wrong? Is there an answer in terms of interaction?

²That was a mistake in my talk, as confirmed by T. Ehrhard, uniform coherent spaces are a model of Coh. Diff. PCF

Conclusion

Thank you!

