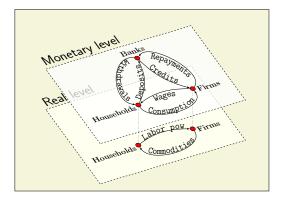
Introduction	Formalization	Type system	Preparing for more datas
0	00	0	0
	0	000	0
	00	0	
	0		

Programming in a stock-flow consistent framework

Pierre Boudes, Julien David, Christophe Fouqueré, Aldo Gangemi

December 12, 2014


▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへで

INTRODUCTION

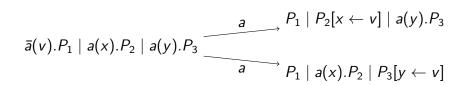
Formalization 00 0 00 TYPE SYSTEM 0 000 0 PREPARING FOR MORE DATAS

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?

A simple SFC-ABM model

Figure: credit Pascal Seppecher

INTRODUCTION	Formalization	Type system	Preparing for more datas
C	•0	0	0
	0	000	0
	00	0	
	0		


Concurrent processes in pi-calculus

- Processes (*P*, *P*', *Q* etc.)
 - Processes in parallel $P \mid Q$
 - Null process 0
- Communications

$$\bar{a}(v).P_1 \mid a(x).P_2 \stackrel{a}{\longrightarrow} P_1 \mid P_2[x \leftarrow v]$$

Introduction	Formalization	Type system	Preparing for more datas
0	0.	0	0
	0	000	0
	00	0	
	0		

Concurrency in pi-calculus

・ロッ ・雪 ・ ・ ヨ ・ ・ ヨ ・

э.

DUCTION FORMALIZATION TYPE SYSTEM PREPARING FOR MORE DATAS

Bisimulation

Bisimulation

A bisimulation is a binary relation \cong such that if $P \cong Q$ then

- $\forall P'$, and $\forall a \text{ st } P \xrightarrow{a} P' \exists Q' \text{ st } Q \xrightarrow{a} Q'$ and $P' \cong Q'$
- $\forall Q'$, and $\forall a \text{ st } Q \xrightarrow{a} Q' \exists P' \text{ st. } Q \xrightarrow{a} Q' \text{ and } P' \cong Q'.$

Two process P and Q are said to be *bisimilar* if there exists a bisimulation \cong such that $P \cong Q$. We can further say that P and Q always expose the same

behaviour if for any context, $R, P \mid R$ is bisimilar to $Q \mid R$.

TRODUCTION	Formalization	Type system	PREPARING FOR MORE DATAS
	00	0	0
	0	000	0
	•0	0	
	0		

Choosing the observable facts

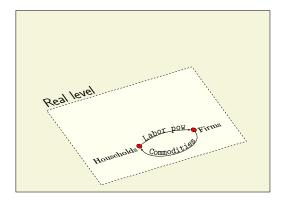
▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Channel names are the observables

• Do we need agent ids ?

ITRODUCTION	Formalization	Type system	PREPARING FOR MORE DATAS
	00	0	0
	0	000	0
	•0	0	
	0		

Choosing the observable facts


・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ 日 ・

Channel names are the observables

- Do we need agent ids ?
- Do we need money amounts ?

UCTION	FORMALIZATION	Type system	Preparing for more datas
	00	0	0
	0	000	0
	00	0	
	0		

All you can do with money

Figure: No observable money flows

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

DUCTION	Formalization	Type system	PREPARING FOR MORE DATAS
	00	0	0
	0	000	0
	00	0	
	•		

Interaction based models

Interaction matrix

	Household	Firm	Bank
Household		Buy, Work	
Firm	Appoint		
Bank			

In process calculi accounts, transactions, firms, households, Banks will all sit at the same level (all processes).

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

Introduction	Formalization	Type system	Preparing for more datas
0	00	•	0
	0	000	0
	00	0	
	0		

The largest set of processes such that:

INTRODUCTION	Formalization	Type system	PREPARING FOR MORE DATAS
0	00	•	0
	0	000	0
	00	0	
	0		

The largest set of processes such that:

• each process alone cannot perform a violation of the balance sheet

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへで

TRODUCTION	Formalization	Type system	Preparing for more datas
	00	•	0
	0	000	0
	00	0	
	0		

The largest set of processes such that:

- each process alone cannot perform a violation of the balance sheet
- any two processes will always interact with respect to the quadruple entry principle.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

TRODUCTION	Formalization	Type system	Preparing for more datas
	00	•	0
	0	000	0
	00	0	
	0		

The largest set of processes such that:

- each process alone cannot perform a violation of the balance sheet
- any two processes will always interact with respect to the quadruple entry principle.

・ロト ・ 日 ・ モート ・ 田 ・ うへで

Existence ?

TRODUCTION	Formalization	Type system	PREPARING FOR MORE DATAS
	00	•	0
	0	000	0
	00	0	
	0		

The largest set of processes such that:

- each process alone cannot perform a violation of the balance sheet
- any two processes will always interact with respect to the quadruple entry principle.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●

Existence ?coinduction.

Introduction	Formalization	Type system	PREPARING FOR MORE DATAS
	00	0	0
	0	000	0
	00	0	
	0		

Function type

If a function f is of type $A \rightarrow B$ and its argument v is of type A and if the computation f(v) does not run forever or raise an error then the result is of type B.

A type is an **invariant** of the computation known from the type system (verification at compile time).

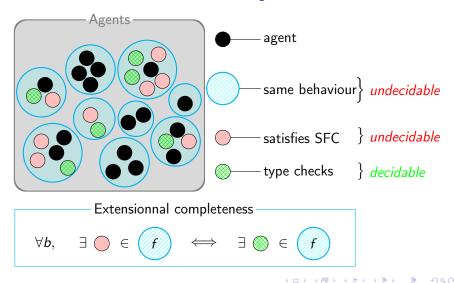
ション ふゆ く 山 マ チャット しょうくしゃ

Types are strongly related with logical propositions.

NTRODUCTION	Formalization	Type system	PREPARING FOR MORE DATAS
)	00	0	0
	0	000	0
	00	0	
	0		

An example of a free theorem

If f is of type $\forall \alpha$, List $\alpha \rightarrow$ Int then for any type A, for any data I of type List A, and for any $g : A \rightarrow B$:


$$f(l) = f(map(g, l))$$

Where map(g, I) is the list obtained by applying g pointwise to the elements of I.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●

TRODUCTION	Formalization	Type system	PREPARING FOR MORE DATAS
	00	0	0
	0	000	0
	00	0	
	0		

Extensionnal completeness

Introduction	Formalization	Type system	Preparing for more datas
0	00	0	0
	0	000	0
	00	•	
	0		

Automatically generated behaviours

With a language constrained structurally (induction) we can generate new behaviours automatically.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへの

Introduction	Formalization	Type system	PREPARING FOR MORE DATAS
0	00	0	•
	0	000	0
	00	0	
	0		

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Amount of transactions (data) in a reasonably complex simulation ?

Introduction	Formalization	TYPE SYSTEM	Preparing for more datas
0	00	0	•
	0	000	0
	00	0	
	0		

Amount of transactions (data) in a reasonably complex simulation ? With 10000 households \times 100 transactions per period for each household we get 10^6 transactions per period. Let say 10^7 bytes per period, 10 Gb for 1000 periods.

ション ふゆ く 山 マ チャット しょうくしゃ

Introduction	Formalization	Type system	Preparing for more datas
0	00	0	•
	0	000	0
	00	0	
	0		

Amount of transactions (data) in a reasonably complex simulation ? With 10000 households \times 100 transactions per period for each household we get 10^6 transactions per period. Let say 10^7 bytes per period, 10 Gb for 1000 periods. Some comparisons.

ション ふゆ く 山 マ チャット しょうくしゃ

- Bitcoin chainblock actual size 30 Gb
- Facebook : 4 Pb / year (4 \times 10 15 bytes)
- LHC : 15 Pb / year
- LSST (large telescope) : 100 Pb / year

Introduction	Formalization	Type system	Preparing for more datas
0	00	0	•
	0	000	0
	00	0	
	0		

Amount of transactions (data) in a reasonably complex simulation ? With 10000 households \times 100 transactions per period for each household we get 10^6 transactions per period. Let say 10^7 bytes per period, 10 Gb for 1000 periods. Some comparisons.

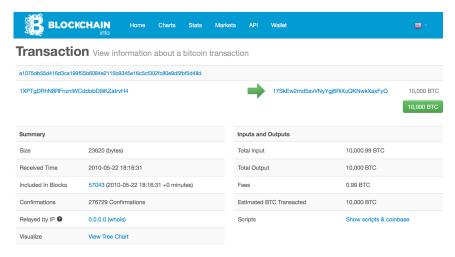
ション ふゆ く 山 マ チャット しょうくしゃ

- Bitcoin chainblock actual size 30 Gb
- Facebook : 4 Pb / year (4 \times 10 15 bytes)
- LHC : 15 Pb / year
- LSST (large telescope) : 100 Pb / year

Real data in heterogeneous datasets

Introduction	Formalization	Type system	Preparing for more datas
0	00	0	•
	0	000	0
	00	0	
	0		

Amount of transactions (data) in a reasonably complex simulation ? With 10000 households \times 100 transactions per period for each household we get 10^6 transactions per period. Let say 10^7 bytes per period, 10 Gb for 1000 periods. Some comparisons.


- Bitcoin chainblock actual size 30 Gb
- Facebook : 4 Pb / year (4 \times 10 15 bytes)
- LHC : 15 Pb / year
- LSST (large telescope) : 100 Pb / year

Real data in heterogeneous datasets \implies linked data

ション ふゆ く 山 マ チャット しょうくしゃ

Introduction	Formalization	Type system	Preparing for more datas
0	00	0	0
	0	000	•
	00	0	
	0		

Tracking money?

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@